Lecture 4 - Spread, Other Loss Functions,
Gradient Descent

DSC 40A, Fall 2021 @ UC San Diego
Suraj Rampure, with help from many others



Announcements

Make sure you submit Survey 1!

Homework 2 will be released today, due Monday 10/11 at
11:59pm.

Groupwork 2 will be released today, due Thursday 10/7 at
11:59pm. Must submit in groups of 2-4.

Discussion section is on Wednesday. Remote again.
Later today we'll send out a signup sheet where you
can specify the breakout rooms you want.

If you have a group you want to meet with outside of
discussion, go for it.

Videos for Lecture 3 are posted on Campuswire.



Agenda

Recap of empirical risk minimization.
Center and spread.
A new loss function.

Gradient descent.



Recap of empirical risk minimization



Empirical risk minimization

Goal: Givenﬁataset Y11 Y5 0 ¥, determine the best
prediction i) ~ b'St

Strategy:

Choose a loss function, L(h, y), that measures how far
any particular prediction h is from the “right answer”

y.

Minimize empirical risk (also known as average loss)
over the entire dataset. The value(s) of h that
minimize empirical risk are the resultlng “best

predictions”.
1 n
=> Lh,y,)
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Absolute loss and squared loss

General form of empirical risk:
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Absolute loss: L, (h,y) = |y - hl.
Empirical risk: R, (h) =,% 57 y. - hl.[Also called
“mean absolute error”.

Minimized by h* = Median(y., y,, ..., ¥,)-
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Squared loss: L. (h,y) = (y - )2 =
Empirical risk: Ry, (h) =[% > (v: - h)?J Also called
“mean squared error”.

Minimized by h* = Mean(y,, y,, .., ¥,).



Consider a dataset y,,y,, ... Y, =1.,¥.2 5

Recall, h

n +
Ryqlh) = %Z(yi -hy? - "‘i *J'= 2
i=1
Is it true that, for any h, [R, (h)]? = Ryg(h)? |
a) True g——[ +l] =
b) False Rg () =7 1 ) 5

0 answer, go to menti.com and enter the code 1250

9212. ‘
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Center and spread



What does it mean?

General form of empirical risk:

R =1 L(h,y,)

i=1

The input@\at minimizes R(h) is some measure of the
center of the data set.

e.g. median, mean, mode.

The minimum output R(h*) represents some measure of
the spread, or variation, in the data set.



Absolute loss

The empirical risk for the absolute loss is

t n
abs Z

Rgps(h) is minimized at h* = Median(y,, Y,, .., ¥,,)-

N

(h) is

Therefore, the minimum value of R,

Rabs(h*) ~-abs(’v\edlan(y11yzr lyn))

Zly, Median(y,, ¥, -, ¥,)I-
i=1




Mean absolute deviation from the median

The minimium value of R, _(h) is the mean absolute
deviation from the median.
e

)

1% .
=2 1y - Median(y,, y;, ., y,)]
i=1

It measures how far each data point is from the median,
on average. Median :

Discussion Question

For the data set 2,3,3,4, what is the mean absolute
deviation from the median?

a)o c)1 d)?2




Mean absolute deviation from the median
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Squared loss

The empirical risk for the squared loss is

R, (h) is minimized at h* = Mean(y,, y,, ..., ¥,,)-

sq(
Therefore, the minimum value of qu(h) is

qu(h*) = qu(Mean(y‘l ’ y21 A | yn))

Z - Mean(y, ¥, . ,y,,))z-}
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Variance

The minimium value of qu(h) is the mean squared

deviation from the mean, more commonly known as the

variance. " "

n l Lo~
Z(y, _Mean(y1ly21"'lyn))2 QT.Z("“Y)
i=1
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74
It measures the squared distance of each data point from
the mean, on average.

S|-

Its square root is called the standard deviation.



Variance Re h)




0-1 loss

The empirical risk for the 0-1 loss is

1<(0, ifh=y.
Ry (=1 {7 71

ne11, ifhzy,

QG{NOV

R0 ()= fro
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This is the proportlon (between 0 and 1) of data points

not equal to h.

Ry (h) is minimized at h* = Mode(y,, ¥, .., ¥,,)-

Therefore, R,,(h*) is the proportion of data points not

equal to the mode



A poor way to measure spread

The minimium value of Roﬂ(h) is the proportion of data
points not equal to the mode.

A higher value means less of the data is clustered at the
mode.

Just as the mode is a very simplistic way to measure the
center of the data, this is a very crude way to measure

spread. %_ %_
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Summary of center and spread

Different loss functions lead to empirical risk functions
that are minimized at various measures of center.

The minimum values of these risk runctions are various
measures of spread.

There are many different ways to measure both center and
spread. These are sometimes called descriptive statistics.

m.lvv sthsics



A new loss function



Plotting a loss function

The plot of a loss function tells us how it treats outliers.

Consider y to be some fixed value. PlotL_ (h,y)=|y-hl:

ﬂ“-;«)




Plotting a loss function

The plot of a loss function tells us how it treats outliers.

Consider y to be some fixed value. Plot qu(h, y)=(y-h)*
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Discussion Question

Suppose L considers all outliers to be equally as bad.
What would it look like far away from y?

a) flat
b) rapidly decreasing

c) rapidly increasing




A very insensitive loss

ﬂw{f)

y

because it doesn’t have a name.

We'll call this loss L

ucsd



Discussion Question

Which of these could be L, _,(h,y)?

)

d) 1-e -l
To answer, go to menti.com and enter the code 1250
9212.




Adding a scale parameter
Problem: L has a fixed scale. This won't work for all
datasets.
If we're predicting temperature, and we're off by 100
degrees, that's bad.

ucsd

If we're predicting salaries, and we're off by 100
dollars, that's pretty good.

What we consider to be an outlier depends on the

scale of the data. .
‘IM(W fo

Fix: add a scale parameter, o: - be(! carv®
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Adding a scale parameter
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Empirical risk minimization
We have salaries y, 5, ...V,

To find prediction, ERM says to minimize the average loss;
—

k\__/
_ZLUCsd(h v;) K-\_/

1
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Let's plot R

ucsd

Recall:

Ruglh) = 1> [1- 19
i=1

Once we have data y,, ¥,,.., ¥, and a scale g, we can plot
Rucsd(h)'

We'll use full the StackOverflow dataset (n = 1121).

Let's try several scales, 0.



Plot of R h)
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Plot of R __,(h)
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Plot of R __,(h)
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Plot of R __,(h)
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Plot of R __,(h)

o=14500
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Plot of R __,(h)
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Plot of R __,(h)

o=32000
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Minimizing R __,

To find the best prediction, we find h* minimizing R __,(h).

R,csq(h) is differentiable.

To minimize: take derivative, set to zero, solve.

" _ (1:-*\)1
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Step 1: Taking the derivative
dR

Puesd _ d (l i [1 - e—(y;-h)zloz])
dh " dh\n&L-



Step 2: Setting to zero and solving

We found:

da _L" -y
dh(h ogh y -e

Now we just set to zero and solve for h:

Z(h y;)-eh vy’ lo*

n02

—
We can calculate derivative, but we can’t solve for h; we're
stuck again.

Now what???



Gradient descent



The general problem

Given: a differentiable function R(h).

Goal: find the input h* that minimizes R(h).

Gradivd Aesced  weks [ ony
d:ﬁ‘i,uﬁa% fmcﬁml aol J’ust

4»»70*'-‘m9 risk !



Meaning of the derivative

We're trying to minimize a differentiable function R(h). Is
calculating the derivative helpful?

Z—Z(h) is a function; it gives the slope at h.

S v



Key idea behind gradient descent

If the slope of R at h is positive then moving to the left
decreases the value of R.

i.e., we should decrease h.

1 decreaage slope. 13

— Pocfb‘n
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Key idea behind gradient descent

If the slope of R at h is negative then moving to the right
decreases the value of R.

i.e., we should increase h.

dewreasre
—
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Key idea behind gradient descent

Pick a starting place, h,. Where do we go next?
Slope at h, negative? Then increase h,,.
Slope at h,, positive? Then decrease h,,.

This will work:




Gradient Descent

Pick a to be a positive number. It is the learning rate, also
known as the step size.

Pick a starting prediction, h,,.
. dR
On step i, perform update h, = h, , -a- d_h(hi‘1)

Repeat until convergence (when h doesn’t change much).

N




You will not be responsible for implementing gradient descent
in this class, but here's an implementation in Python if you're
curious:

def gradient_descent(derivative, h, alpha, tol=1e-12):
"""Minimize using gradient descent.”"”
while True:
h_next = h - alpha * derivative(h)
if abs(h_next - h) < tol:
break
h = h_next
return h



Example: Minimizing mean squared error

Recall the mean squared error and its derivative:

Discussion Question

let y,=-4, y,=-2, y;=2, y,=h Pickh,=4
and a = 1/4. Whatis h,?

-1

N T Q
— ~— — —

N = O

d
To answer, go to menti.com and enter the code 1250
9212.




Solution

dqu

(h) = Z<h ;)

Data values are -4,-2, 2, 4. Pick hy=4and a=1/4. Find h,.

R == (h -y,
i=1



Summary



Summary

Different loss functions lead to empirical risk functions
that are minimized at various measures of center.

The minimum values of these empirical risk functions are
various measures of spread.

We came up with a more complicated loss function, L
that treats all outliers equally.
We weren't able to minimize its empirical risk R
by hand.

ucsd?

ucsd

We invented gradient descent, which repeatedly updates
our prediction by moving in the opposite direction of the
derivative.

Next Time: We'll look at gradient descent in action.



