Lecture 4 – Spread, Other Loss Functions, Gradient Descent

DSC 40A, Fall 2021 @ UC San Diego Suraj Rampure, with help from many others

Announcements

- Make sure you submit Survey 1!
- ► Homework 2 will be released today, due **Monday 10/11 at 11:59pm**.
- ► Groupwork 2 will be released today, due **Thursday 10/7 at 11:59pm**. **Must** submit in groups of 2-4.
- Discussion section is on Wednesday. Remote again.
 - Later today we'll send out a signup sheet where you can specify the breakout rooms you want.
 - If you have a group you want to meet with outside of discussion, go for it.
- Videos for Lecture 3 are posted on Campuswire.

Agenda

- Recap of empirical risk minimization.
- Center and spread.
- ► A new loss function.
- Gradient descent.

Recap of empirical risk minimization

Empirical risk minimization

- ► **Goal**: Given a dataset $y_1, y_2, ..., y_n$, determine the best prediction h^*
- Strategy:
 - Choose a loss function, L(h, y), that measures how far any particular prediction h is from the "right answer" y.
 - 2. Minimize **empirical risk** (also known as average loss) over the entire dataset. The value(s) of *h* that minimize empirical risk are the resulting "best predictions".

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

Absolute loss and squared loss

General form of empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- ► Absolute loss: $L_{abs}(h, y) = |y h|$.

 ► Empirical risk: $R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$. Also called "mean absolute error".
 - Minimized by $h^* = Median(y_1, y_2, ..., y_n)$.
 - "squared error"
- Squared loss: $L_{sq}(h, y) = (y h)^2$ Empirical risk: $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$ Also called "mean squared error".
 - Minimized by $h^* = \mathbf{Mean}(y_1, y_2, ..., y_n)$.

Discussion Question

Consider a dataset
$$y_1, y_2, ..., y_n$$
. Recall,

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h| \quad R_{bs}(4) = \frac{1}{2}$$

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Is it true that, for any
$$h$$
, $[R_{abs}(h)]^2 = R_{sa}(h)$?

a) True

$$R_{sq}(4) = \frac{1}{2} \left[9 + 1 \right]$$

b) False

To answer, go to menti.com and enter the code 1250 9212.

Center and spread

What does it mean?

General form of empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- ► The input (h* that minimizes R(h) is some measure of the center of the data set.
 - e.g. median, mean, mode.
- ► The minimum output *R*(*h**) represents some measure of the **spread**, or variation, in the data set.

Absolute loss

The empirical risk for the absolute loss is

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

- $Arr R_{abs}(h)$ is minimized at $h^* = Median(y_1, y_2, ..., y_n)$.
- ► Therefore, the minimum value of $R_{abs}(h)$ is

$$R_{abs}(h^*) = R_{abs}(\text{Median}(y_1, y_2, ..., y_n))$$

$$= \frac{1}{n} \sum_{i=1}^{n} |y_i - \text{Median}(y_1, y_2, ..., y_n)|.$$

Mean absolute deviation from the median

The minimium value of $R_{abs}(h)$ is the mean absolute deviation from the median.

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \text{Median}(y_1, y_2, ..., y_n)|$$

It measures how far each data point is from the median, on average.

Median: 3

Mean absolute deviation from the median

Squared loss

The empirical risk for the squared loss is

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

- $ightharpoonup R_{sq}(h)$ is minimized at $h^* = Mean(y_1, y_2, ..., y_n)$.
- Therefore, the minimum value of $R_{sq}(h)$ is

$$R_{sq}(h^*) = R_{sq}(Mean(y_1, y_2, ..., y_n))$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - Mean(y_1, y_2, ..., y_n))^2.$$

Variance

The minimium value of $R_{sq}(h)$ is the mean squared deviation from the mean, more commonly known as the variance.

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \text{Mean}(y_1, y_2, ..., y_n))^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2$$

- It measures the squared distance of each data point from the mean, on average.
- Its square root is called the **standard deviation**.

0-1 loss

The empirical risk for the 0-1 loss is

isk for the 0-1 loss is

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0, & \text{if } h = y_i \\ 1, & \text{if } h \neq y_i \end{cases}$$

- This is the proportion (between 0 and 1) of data points not equal to h.
- $ightharpoonup R_{0.1}(h)$ is minimized at $h^* = \text{Mode}(y_1, y_2, ..., y_n)$.
- ► Therefore, $R_{0.1}(h^*)$ is the proportion of data points not equal to the mode.

A poor way to measure spread

- ► The minimium value of $R_{0.1}(h)$ is the proportion of data points not equal to the mode.
- A higher value means less of the data is clustered at the mode.

Just as the mode is a very simplistic way to measure the center of the data, this is a very crude way to measure spread.

Summary of center and spread

- ▶ Different loss functions lead to empirical risk functions that are minimized at various measures of **center**.
- The minimum values of these risk runctions are various measures of spread.
- There are many different ways to measure both center and spread. These are sometimes called descriptive statistics.

A new loss function

Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{abs}(h, y) = |y h|$:

Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{sq}(h, y) = (y h)^2$:

Discussion Question

Suppose L considers all outliers to be equally as bad. What would it look like far away from y?

- a) flat
- b) rapidly decreasing
- c) rapidly increasing

A very insensitive loss

 \triangleright We'll call this loss L_{ucsd} because it doesn't have a name.

Discussion Question

Which of these could be $L_{ucsd}(h, y)$?

c)
$$1 - (y - h)^2$$

To answer, go to menti.com and enter the code 1250 9212.

Adding a scale parameter

- Problem: L_{ucsd} has a fixed scale. This won't work for all datasets.
 - If we're predicting temperature, and we're off by 100 degrees, that's bad.
 - If we're predicting salaries, and we're off by 100 dollars, that's pretty good.
 - What we consider to be an outlier depends on the scale of the data.
- \triangleright Fix: add a scale parameter, σ :

You get to choose!
$$L_{ucsd}(h, y) = 1 - e^{-(y-h)^2/\sigma^2}$$

Not std deviation!!

Adding a scale parameter

Lucsd =
$$1 - e^{-\frac{y-h}{\sigma^2}}$$

small σ :

Empirical risk minimization

- We have salaries $y_1, y_2, ..., y_n$.
- ► To find prediction, ERM says to minimize the average loss:

$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{ucsd}(h, y_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

Let's plot R_{ucsd}

Recall:

$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

- Once we have data $y_1, y_2, ..., y_n$ and a scale σ , we can plot $R_{ucsd}(h)$.
- ▶ We'll use full the StackOverflow dataset (n = 1121).
- Let's try several scales, σ .

Minimizing R_{ucsd}

- ► To find the best prediction, we find h^* minimizing $R_{ucsd}(h)$.
- $ightharpoonup R_{ucsd}(h)$ is differentiable.
- ► To minimize: take derivative, set to zero, solve.

$$R_{\text{ucsd}}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-\frac{(y_i - h)^2}{\sigma^2}} \right]$$

Step 1: Taking the derivative

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2/\sigma^2} \right] \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{n} \frac{1}{n} - \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} + \frac{1}{n} e^{-(y_i - h)^2/\sigma^2} \right]$$

Step 2: Setting to zero and solving

▶ We found:

$$\frac{d}{dh}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

Now we just set to zero and solve for h:

$$0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

- We can calculate derivative, but we can't solve for h; we're stuck again.
- Now what???

Gradient descent

The general problem

- ▶ **Given:** a differentiable function R(h).
- ▶ **Goal:** find the input h^* that minimizes R(h).

Gradient descend works for any differentiable function, not just emptrical risk!

Meaning of the derivative

- ► We're trying to minimize a **differentiable** function *R*(*h*). Is calculating the derivative helpful?
- $ightharpoonup \frac{dR}{dh}(h)$ is a function; it gives the slope at h.

Key idea behind gradient descent

- ► If the slope of *R* at *h* is **positive** then moving to the **left** decreases the value of *R*.
- i.e., we should **decrease** *h*.

Key idea behind gradient descent

- If the slope of *R* at *h* is **negative** then moving to the **right** decreases the value of *R*.
- ▶ i.e., we should **increase** *h*.

Key idea behind gradient descent

- \triangleright Pick a starting place, h_0 . Where do we go next?
- ▶ Slope at h_0 negative? Then increase h_0 .
- ▶ Slope at h_0 positive? Then decrease h_0 .
- ► This will work:

$$h_1 = h_0 - \frac{dR}{dh}(h_0)$$

Gradient Descent

- Pick α to be a positive number. It is the **learning rate**, also known as the **step size**.
- Pick a starting prediction, h_0 .
- On step i, perform update $h_i = h_{i-1} \alpha \cdot \frac{dR}{dh}(h_{i-1})$
- Repeat until convergence (when h doesn't change much).

You will not be responsible for implementing gradient descent in this class, but here's an implementation in Python if you're curious:

if abs(h next - h) < tol:

break h = h next

return h

```
curious:

def gradient_descent(derivative, h, alpha, tol=1e-12):
    """Minimize using gradient descent."""
    while True:
```

h_next = h - alpha * derivative(h)

Example: Minimizing mean squared error

Recall the mean squared error and its derivative:

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2$$
 $\frac{dR_{\text{sq}}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$

Discussion Question

Let $y_1 = -4$, $y_2 = -2$, $y_3 = 2$, $y_4 = 4$. Pick $h_0 = 4$ and $\alpha = 1/4$. What is h_1 ?

- a) -1
- b) 0
- c)
- d) 2

To answer, go to menti.com and enter the code 1250 9212.

Solution

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2$$
 $\frac{dR_{\text{sq}}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)^2$

Data values are -4, -2, 2, 4. Pick h_0 = 4 and α = 1/4. Find h_1 .

Summary

Summary

- Different loss functions lead to empirical risk functions that are minimized at various measures of **center**.
- ► The minimum values of these empirical risk functions are various measures of **spread**.
- We came up with a more complicated loss function, L_{ucsd} , that treats all outliers equally.
 - We weren't able to minimize its empirical risk R_{ucsd} by hand.
- We invented gradient descent, which repeatedly updates our prediction by moving in the opposite direction of the derivative.
- Next Time: We'll look at gradient descent in action.