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Announcements F' SLIP DAAS

Homework 3 will be released after lecture, will be due on
Monday 10/18 at 11:59pm. Will be shorter than usual.

- No SLIP DAYSI!!
Groupwork 3 will be released after lecture, will be due on
Thursday 10/14 at 11:59pm.

DISCUSSION SECTION ON WEDNESDAY WILL BE IN-PERSON!
Wednesday, 6-6:50PM, Center Hall 113.

Homework 1, Groupwork 1, and Groupwork 2 grades are
released on Gradescope. 1

SUgMIT suave 2
Midterm is Thursday, 10/21 during class time.

Review Session: Tuesday 10/19, 5-8PM, PCYNH 109.

See https://dscs0a.com/resources.



Agenda

Recap of gradient descent.
Prediction rules.

Minimizing mean squared error, again.



Recap: gradient descent



Gradient descent

The goal of gradient descent is to minimize a function
R(h).
—
Gradient descent starts off with an initial guess h, of
where the minimizing input to R(h) is, and on each step
tries to get closer to the minimizing input h* by moving

opposite the direction of the slope: i fivR
x >0 | — h—h ‘dh(h)/"““’“ﬂi
\ ) Juness

a is known as the learnlng rate, or step size. It
controls how much we update our guesses by on

each iteration.

Gradient descent terminates once the guesses h; and h,_,
stop changing much.



See Lecture 5's supplemental notebook for animations.



When does gradient descent work? ’@’

A function f is convex if, for any two inputs a and b, the
line segment connecting the two points (a, f(a)) and
(b, f(b)) does not go below the function f.

\ j € R (h) = %Z,L ly; - h]: convex. Q 7\

Req(h) = 137 (y; - h)*: convex.

1\,] Rycsa(h) = 157, [1- e 0ih*19°]: not convex\/‘I

Theorem: If R(h) is convex and differentiable then
gradient descent converges to a global minimum of R

/given an appropriate step size.



Prediction rules



How do we predict someone’s salary?

After collecting salary data, we...

Choose a loss function. Averagt of (965
- o & W

Find the best prediction by minimizing empirical risk. h"’""-ﬂ-

So far, we've been predicting future salaries without using
any information about the individual (e.g. GPA, years of
experience, number of LinkedIn connections).

New focus: How do we incorporate this information into
our prediction-making process?



Features

A feature is an attribute — a piece of information.

Numerical: age, height, years of experience

Categorical: college, city, education level

Boolean: knows Python?, had internship?

Think of features as columns in a DataFrame (i.e. table).

YearsExperience Age FormalEducation Salary
0 6.37 28.39 Master’s degree (MA, MS, M.Eng., MBA, etc.) 120000.0
1 0.35 25.78 Some college/university study without earning ... 120000.0
2 4.05 31.04 Bachelor’s degree (BA, BS, B.Eng., etc.)  70000.0
3 18.48 38.78 Bachelor’s degree (BA, BS, B.Eng., etc.) 185000.0
4 495 33.45 Master’s degree (MA, MS, M.Eng., MBA, etc.) 125000.0



Variables s '\"'l’ s

The features, x, that we base our predictions on are called
predictor variables.
- owbputs

The quantity, y, that we're trying to predict based on
these features is called the response variable.

""] 3 vet a %AM"
We'll start by predicting salary based on years of
experience.



Prediction rules

We believe that salary is a function of experience.

In other words, we think that there is a function H such
that:
salary {I—@ears of experience)

H is called a hypothesis function or prediction rule.

Our goal: find a good prediction rule, H.



Possible prediction rules

H,(years of experience) = $50,000 + $2,000 x (years of experience)
—_— — 2

H,(years of experience) = $60,000 x 1.05/ears of experience)

H,(years of experience) = $100,000 - $5,000 x (years of experience)

K' Pnbﬁ‘l(g L*Dl

These are all valid prediction rules.

Some are better than others.



Comparing predictions

How do we know which prediction rule is best: H,, H,, H5?

We gather data from n people. Let x; be experience, y; be

salary:
(Experience,, Salary,) (X, ¥,)
(Experience,, Salary,) . (X, V)
(Experience,, Salary,,) (x,,Y,)

See which rule works better on data.



ex?ar.‘enct



Quantifying the quality of a prediction rule H

Our prediction for person i’s salary is H(x;).

As before, we'll use a loss function to quantify the quality

of our predictions. )
Absolute loss: |y H(x | - IACHJ—PNJM'&J

3 [ actuel -—rno‘-tdto‘)

’j $|\M4qu Hh btfo\-(‘

We'll use squared loss, since it's differentiable.

Squared loss: (y; - H(x; ))

Using squared loss, the empirical risk (mean squared
error) of the prediction rule H is:

qu(H) = % Z (yi - H(Xi))2

i=1




Mean squared error SO'J 7fd-‘f-4~‘m vele
= low NSE (R’t(H>>

ex]nrience



Finding the best prediction rule

Goal: out of all functions R = R, find the function H* with
the smallest mean squared error.

That is, H* should be the function that minimizes
n
X
n i=1

There’s a problem.



Discussion Question

Given the data below, is there a prediction rule H which
has zero mean squared error?

é@ b) No
wer, go to menti.com and enter the code 8851

5429.

gx?c.r.'unu_



Problem

We can make mean squared error very small, even zero!
But the function will be weird.

This is called overfitting.

Remember our real goal: make good predictions on data
we haven't seen.



Solution

Don’t allow H to be just any function.

Require that it has a certain form.
‘1 = M)""b

Examples: /

Linear: H(x) = w, + w, X.
Quadratic: H(X) = w,, + W, X, + W, X2

Exponential: H(x) = wye"*.

Constant: H(x) = w,,. -/




Finding the best linear prediction rule

Goal: out of al! linear fgnctions R — R, find the function
H* with the s est mean squared error.
Linear functions are of the form H(x) = w, + w,x.

Wi

They are defined by a slope (w,) and intercept (w,).

That is, H* should be the linear function that minimizes

n

qu(H) = % Z (yi - H(Xi))2
i=1

This problem is called least squares regression.

“Simple linear regression” refers to linear regression
with a single predictor variable.



Minimizing mean squared error for the linear
prediction rule



Minimizing the mean squared error

The MSE is a function qu of a function H.

n

Z(yi_

i=1

o)
—
I
~
|
S|-

. . . ﬂ
But since H is linear, we know H(x;) = w, + w, X;.

ared ko
1 < 2 " /
Rsq(WoyWy) = n Z(YI - (W + w, ;) be (/"‘. r!
i=1
Jc‘ﬂlm«d

Now qu is a function of w, and w,. ’hpl/k'hvcc\ot .

We call w, and w, parameters. A(;f"""# MfE
Parameters define our prediction rule.



Updated goal

Find the slope wj and intercept wy that minimize the MSE,

qu(wo,w1):

Strategy: multivariable calculus.



Recall: the gradient

If f(x,y) is a function of two variables, the gradient of f at
the point (x,, y,) is a vector of partial derivatives:

flffj): x- Zx.]*jq ﬁ(xo,yo)
H_ox-2 Vi (xg o) = |
5y <78 " Loy,

oF . - fo-"tn’
%

Key Fact #1: The derivative is to the tangent line as the
gradient is to the tangent plane.

Key Fact #2: The gradient points in the direction of the
biggest increase.

Key Fact #3: The gradient is zero at critical points.



Strategy

To minimize R(w,, w,): compute the gradient, set it equal to
zero, and solve.

R{wo, e = é (y;-(m """‘i))t

)"rd‘ we o, W,

OR ARG
96\1, = 0 dw




n

Z(y (W, +w x))

1
n i=1

Discussion Question

aR,,

Choose the expression that equals —.
ow,

qu(wo, w,) =

n

) 15 (- (i)

i=1

c) ‘% Z( y; - (o + W, X)) X;

d) %Z(y, (W, +w, X;))

1=1
Go to menti.comand enter the code 8851 5429.




n

Req(Wo, w,) % (v; - (o + wyx,))’ N
i=1

a1 $ 8 (- (we e, X

aw:_né.? (‘j (wo + ))

=L % 2(5 = (wotv, x; ))(-l)
;2 (4:- (oo, «;))

>
= -2
N =




(yi - (W +w, Xi))2

B (51 - (v, +w, x,‘)> ("’fz>

qu(wo,w1) =

S|=
M

aRSq
ow
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n
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n =
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Strategy =R .o
. I ¢ .
Z - (W +w, X)) = 0 Z - (Wy + W, x;)) X, = 0

i=1 i=1

BIN
3|l\)

Solve for w, in first equation.
The result becomes wg, since it is the “best intercept”.

Plug wg into second equation, solve for w;.
The result becomes w7y, since it is the “best slope”.



Solve for w,

(-Tﬁ)% Z(yi - (wy +w,x;)) = 0 (";_l> W= ‘k;.

2(9:’[w¢+u, xl)) -0

=1

=

q

Zy -

=

Zy

VoW, k—. +Wo

A
- Zw, - 2wx =0
= =

"
nw, = ¢ \ZX: =0
=

2 ﬂl“V’.Z’Q: nw.
= =



Solve for w; =

y-u
> Z g (W{: (%> A °¢‘4M3;~un'.

.2 (3:- (5"’* x +w, 'x;)) x; ~0
é@ﬁ‘ﬁ‘“. (xi-% )] % =0

Z(j .‘J ‘f - (x- x)'x) ~0 | i(ﬁ{g)«g
|—l W, = &0
g (7?:1)7‘{ =W, ? (#;: =%)x; A Z(‘*I’;E) <



Least squares solutions

We've found that the values wy and wj that minimize the

. 1 2
function Ry (wo, w,) = L3, (y; - (w, + w,x;))” are

bf—$‘" - V)X
d.fz f'\ M(y, )X;
W:= -

Z(x,.—)'()x,
i=1
where

<i
S|—=

bu‘l‘ M"l-fu-yt

n
2
=1

Let’s re-write the slope wj to be a bit more symmetric.



. 5
Key fact 3,5, 1 <y
Y (3,5, 1] (3-5) +(s-5) +(#-5)
The sum of deviations from the mean for any dataset is 0.
» Mu’hﬂ

S-x0=0  S-9)=0
i=1 =1

1

f: o z
Proo E(YI’;( - 27(;- Z X



Equivalent formula for w;

Claim K—\
n n

D> Wi-9)x D (%=X -7)
. i i=1

W:_ =

1 i(x X)X, i(x X)? constait
Proof: A
i (x-*)(yi-7) - Z[(f J- (-3 J_L)
T paved il o Z(J -y - "‘é (J ..7>
Nuntredoer ot fla sawe ‘-—-—o—"

frof P Aerommat 2(1‘-3)‘&
D vewt daqlor. =t



Least squares solutions

The least squares solutions for the slope w} and intercept
Wy are:

—

n
Z(X,' - )_()(y,' -y)
. i=1 _ »_
Wi = — W) = § - Wy X

> (% - %)

i=1

We also say that wy and wj are optimal parameters.

“bo " he

To make predictions about the future, we use the Méns
prediction rule MSE

H*(x) = wg + wix



Y1 . ]
21 o i 1 i()(i_x)z T':[
SRR w-r-ti- ()5 = 22
l
X Vil -%] -y (x-)?)(y,—fd (x; - X)?
3 7| -2 3 -6 9
4 30 =\ |- | [
8 2| %3 |-2 - 9
| bet=(4



Summary



Summary, next time

We introduced the linear prediction rule, H(x) = w, + w, X.

To determine the best choice of slope (w1) and intercept
(w,), we chose the squared loss function (y; - H(x.))* and
minimized empirical risk qu(wo,w1 ):

After solving for wy and wj through partial differentiation,
we have a prediction rule H*(x) = wg + w}x that we can use
to make predictions about the future.

Next time: Revisiting correlation from DSC 10. Revisiting
gradient descent. Introducing a linear algebraic
formulation of linear regression.



