Lecture 8 - Regression and Linear Algebra

DSC 40A, Fall 2021 @ UC San Diego
Suraj Rampure, with help from many others



Announcements

Midterm Exam on Thursday from 11:00AM-12:30PM.

Remote on Gradescope.

Absolutely no collaboration.

Make sure to read
https://campuswire.com/c/GF82D3B2E/feed/248 for
all the details.

Review session today from 5-8PM in Pepper Canyon 109.
Brief conceptual overview, as well as review of
Homeworks 1-3.

Will be podcasted.

Please fill out Survey 3!

Will close tomorrow night.

The OH schedule is now updated; we have many more OH

on Tuesday and Wednesday, and no OH on Thursday or

Friday. Discussion is replaced with office hours.



Midterm preparation

Review the solutions to previous homeworks and
groupworks.
Homework 3 solutions are now up.

Identify which concepts are still iffy. Re-watch lecture,
post on Campuswire, come to office hours.

Look at the past exams at
https://dsc4ea.com/resources.

Walkthrough exists for SP20.
Study in groups.

Make a “cheat sheet”.



Agenda

Finish linear algebra review.
Formulate mean squared error in terms of linear algebra.

Minimize mean squared error using linear algebra.



Linear algebra review



Dot products

The dot product of two vectors i and v in R" is denoted
by:
nT

u-v=2a'v

Definition:
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u.v:Zuivi=u1V1+U2V2+...+U v
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The result is a scalar!
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Properties of the dot product

Commutative:
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Matrix-vector multiplication

Special case of matrix-matrix multiplication.

The result is always a vector with the same number of
rows as the matrix.

One view: a “mixture” &fthe columns.
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Another view: a dot product with the rows.
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Discussion Question

If Ais an m x n matrix and v is a vector in R", what are
the dimensions of the product vTATAV?
a) m xn (matrix)

b) nx1 (vec
C c) 1x1(scalar)

d) The product is undefined.
To answer, go to menti.com and enter 22 77 26 8.
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Matrices and functions

Suppose A is an m x n matrix and X is a vector in R".

Then, the function f(X) = Ax is a linear function that maps
elements in R" to elements in R™.

The input to f is a vector, and so is the output.

Key idea: matrix-vector multiplication can be thought of
as applying a linear function to a vector.
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Mean squared error, revisited



Wait... why do we need linear algebra?

Soon, we'll want to make predictions using more than one
feature (e.g. predicting salary using years of experience
and GPA).

If the intermediate steps get confusing, think back to
this overarching goal.

Thinking about linear regression in terms of linear
algebra will allow us to find prediction rules that
use multiple features.

are non-linear.

Let’s start by expressing R, . in terms of matrices and
vectors.
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Regression and linear algebra

We chose the parameters for our prediction rule
H(x) = w, + w,x
by finding the wg and wj} that minimized mean squared
error:
1 n
)= 2 Ui H \
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This is kind of like the formula for the length of a vector!
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Regression and linear algebra TS
Let's define a few new terms: J:‘

e=

The observation vector is the vector y € R" with
components y;. This is the vector of observed/“actual”
values. H

'
) h H(Xz_)

The hypothesis vector is the vector he [R” with F )

components H(x;). This is the vector of predicted ﬁ‘ugs’(

The error vector is the vector é € R" with components
e; =y, - H(x;). This is the vector of (signed) errors.

y,- Hla)
y, - H(Yz.) 2 - 9-
,n = H(xn)



. . N I~ H(X.)
Regression and linear algebra 2= [ 92~ Hlx2)

Let's define a few new terms: :H(
. . . m=Hk)
The observation vector is the vector y € R" with

components y;. This is the vector of observed/“actual”
values.

The hypothesis vector is the vector h € R" with
components H(x;). This is the vector of predicted values.

The error vector is the vector é € R" with components
y, H(x.). This is the vector of (signed) errors.

v “L’ Y

We can rewrite the mean squared error as:

1 - rd
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The hypothesis vector

The hypothesis vector is the vector h € R" with
components H(x;). This is the vector of predicted values.

The hypothesis vector h can be written

H(x)]  [wo + w, X, o, Wo
B H(lgz) | WotWiXp | ‘ Ko [bJ.
HOx )] Lwy +w,x, |- . -
0t W, % o
- X2
)’\- X’* pomaetes
N W A vecter

Ms igh matrix



Rewriting the mean squared error

Define the design matrix X tobethenx2 matrix

K(“o,”l) :Ti‘% (7(°(“°ch¢)> 1 §1
/:w"""{, "

- - W
Define the parameter vector w € R? to be W = [WO].
1

Then h = XW, so the mean squared error becomes:
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Mean squared error, reformulated
Before, our goal was to find the values of w, and w, that
minimize

Rag(Woy W) = = > (v - (g + wy )

The results:

W Z?ﬂ(xi‘)_()(y,")_/) _r& Wb
! Z?ﬂ(x,' - X)? Oy 0

o

Now, our goal is to find the vector w that minimizes

- _1 - - 2
)

Both versions of R_ q are equivalent.



Spoiler alert...

Goal: find the vector w that minimizes
R, (1) = ~ |7 - Xii] |2
sq n
Spoiler alert: the answer' is
V‘_/'* = (XTX)_1XT)7
Let’s look at this formula in action in a notebook.

Then we'll prove it ourselves by hand.

Tassuming X7 X is invertible



Minimizing mean squared error, again



Some key linear algebra facts

> >

If A and B are matrices, and i, v, W, Z are vectors:
(A+B) =AT +BT

(AB)" = BTAT

-

-v=v-U=0a"v=vld

Nan?=a-a



Goal

We want to minimize the mean squared error:
Ryg (i) = 117 - X
sq n
Strategy: Calculus. .fM,_-k.m of a veehw

Problem: This is a function of a vector. What does it even
mean to take the derivative of qu(vT/) with respect to a
vector w?



A function of a vector

Solution: A function of a vector is really just a function of
multiple variables, which are the components of the
vector. In other words,

RS

W,y Wy)

q(VT/) = qu(WOI
) W

where w,, w,, ..., w, are the entries of the vector w.2

We know how to deal with derivatives of multivariable
functions: the gradient!

& () W= [,,‘j']

Rg t(w., W,)

2In our case, W has just two components, w, and w,. We'll be more
general since we eventually want to use prediction rules with even more
parameters.




The gradient with respect to a vector

The gradient of qu(vT/) with respect to w is the vector of
partial derivatives:

'aqu -
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3R,
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where w,, w,, ..., w, are the entries of the vector w.



Example gradient calculation

Example: Suppose f(X) = @- X, where d and X are vectors in R".
What is < £(%)?

f(i)r ;‘; = q|Y.+ale +a} K;"‘» . 4 0AKA

p)
—9t= Q\ (j'f' -
9'[, A$(§): -ef /|
Ax 2
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Goal

We want to minimize the mean squared error:
Ryg (i) = 117 - X
sq n

Strategy:
Compute the gradient of qu(vT/).
Set it to zero and solve for w.
The result is called w*.

Let's start by rewriting the mean squared error in a way
that will make it easier to compute its gradient.



Rewriting mean squared error

2 2 -
Ryg (1) = 217 - X ISl = V-V =V

Discussion Question

Which of the following is equivalent to qu(vT/) ?

T

a) (¥ - Xir) - (Xi - y)

d) ~(V-Xw y - Xw)"
To answer, go to menti.comand enter 22 77 26 8.




Rewriting mean squared error

R = 1y -xil? < L (§- -Xa) (j XW) T
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Rewriting mean squared error

Ry () =



Compute the gradient

ddR; :%Qﬁy-zx V- + W XTXW]
L y)-d—w(zm+iw(wﬂxm]
o ()(‘;;)Tg - *3' é/ffj:z
(kBY =8 & =) (X'g )
:VE‘, . (X 5)
=Xy &



Compute the gradient

dR,
a d (17> - 5 e o
T~ g n 77 - 27 i)
17d ,5 - d To = d TuT _,]
= —|—= - —(2x — (WTXTX
o Lo U ) g XV )+ o2 (WTXTx00)
d S oy
= -y=0.

Why? y is a constant with respect to w.

L (3XTy-w) = 2XTy.
Why? We already showed d - X = d.

L (WTXTXW) = 2XT X,
Why? See Homework 4.

Q
S



Compute the gradient

dR,
q_ d(l-p -)_ T-» - -)TT -»)
el n[y V-2XTy -+ wIXTXW
17d ,» - d To = d ja1uT q]
D Gpy- L (2xTy @)+ L (WTXTX
o Lo U ) g XV )+ o2 (WTXTx00)

*ZxTi + 1XXa =0




The normal equations

To minimize qu(vT/), set its gradient to zero and solve for

-2XT§ + 2X™XW = 0 A W= L

w:
= | XTXW=X"y

This is a system of equations in matrix form, called the
normal equations.

If XX is invertible, the solution is
W* - (XTx)—'IxTV

This is equivalent to the formulas for wy and wj we saw
before!
Benefit - this can be easily extended to more
complex prediction rules.



Side note — another proof

We set out to minimize
R, () = ~|1 - Xiir||2
sq n
We did it using multivariable calculus.

There’s another proof of this same fact that relies on
knowledge of linear projections. We will not cover it in
class and you are not responsible for it, but you can
watch video 13.4 here if you're curious:
http://dsi1ee.org/su2e/lecture/lec13/.



Summary



Summary

We used linear algebra to rewrite the mean squared error

for the prediction rule H(x) = w, + w,x as

- _ 1 - - 2

X is called the design matrix, w is called the
parameter vector, y is called the observation vector,

and h = XW is called the hypothesis vector.

We minimized qu(vT/) using multivariable calculus and
found that the minimizing W satisfies the normal
equations, X"Xw = XTy.

Closed-form solution:

VT/* - (XTX)_1XT)7



What's next?

The whole point of reformulating linear regression in
terms of linear algebra was so that we could generalize
our work to more sophisticated prediction rules.

Note that when deriving the normal equations, we
didn’t assume that there was just one feature.

Examples of the types of prediction rules we'll be able to
fit soon:

H(X) = wy + W, X + w,x?.
H(x) = w,, + w, cos(x) + w,e*.
HxXD, x®) = wy + w, xXM + w,x?.

e.g. Predicted Salary =
w, + w,(Years of Experience) + w,(GPA).



