Lecture 9 – Multiple Linear Regression and Feature Engineering

DSC 40A, Fall 2021 @ UC San DiegoSuraj Rampure, with help from many others

Announcements

- Midterm grades released; submit regrade requests by Friday night.
- Groupwork 4 out later today, due Thursday at 11:59pm.
- Homework 4 out later today, due Monday at 11:59pm.
- Come to the DSC Faculty-Student Mixer at 1pm today!
 - Zoom link: https://ucsd.zoom.us/j/98335299546.

Agenda

- Recap of Lecture 8.
- Using multiple features.
- ► Practical demo.
- Interpreting weights.
- Feature engineering.

Recap of Lecture 8

Regression and linear algebra

Last time, we used linear algebra to fit a prediction rule of the form

$$H(x) = w_0 + w_1 x$$

To do so, we first defined a design matrix X, parameter vector \vec{w} , and observation vector \vec{y} as follows: $\vec{w} + \omega_1 \vec{x}$

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ ... & ... \\ 1 & x_n \end{bmatrix}, \quad \vec{W} = \begin{bmatrix} W_0 \\ W_1 \end{bmatrix}, \quad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ ... \\ y_n \end{bmatrix} \quad \text{observation}$$
where y_1 and y_2 are the restriction of the second in the second

We also re-wrote our prediction rule as a matrix-vector multiplication, defining the hypothesis vector \vec{h} as

$$\vec{h} = X\vec{w}$$

Minimizing mean squared error

With our new linear algebra formulation of regression, our mean squared error now looks like:

$$R_{sq}(\vec{w}) + |\vec{y} - X\vec{w}||^2$$

- To find \vec{w}^* , the optimal parameter vector, we took the gradient of $R_{sq}(\vec{w})$ with respect to \vec{w} , set it equal to 0, and solved.
- ► The result is the **normal equations**:

al equations:
$$X^{T}X\vec{w}^{*} = X^{T}v$$

 \triangleright When X^TX is invertible, an equivalent form is

$$\vec{w}^* = (X^T X)^{-1} X^T y$$

This gives the same w_0^* and w_1^* as our formulas from Lecture 6.

Using multiple features

Using multiple features

- How do we predict salary given multiple features?
- We believe salary is a function of experience and GPA.
- In other words, we believe there is a function H so that:

salary
$$\approx$$
 H (years of experience, GPA)

- Recall: H is a prediction rule.
- Our goal: find a good prediction rule, H.

Example prediction rules

(0000 H_1 (experience, GPA) = \$2,000 × (experience) + \$40,000 × $\frac{GPA}{40}$ H_2 (experience, GPA) = \$60,000 × 1.05^(experience+GPA)

$$H_3$$
(experience, GPA) = cos(experience) + sin(GPA)

Linear prediction rules

We'll restrict ourselves to linear prediction rules:

$$H(\text{experience, GPA}) = w_0 + w_1(\text{experience}) + w_2(\text{GPA})$$
 $W_0 \cdot O + w_1 \cdot O + w_2 \cdot O$

- ▶ Note that H is linear in the parameters w_0 , w_1 , w_2 .
 - \vdash H is a linear combination of features (1, experience, GPA) with ws as the coefficients (w_0 , w_1 , and w_2).
- As a result, we can solve the **normal equations** to find w_0^* , w_1^* , and w_2^* !
- Linear regression with multiple features is called multiple linear regression.

Geometric interpretation

Question: The prediction rule

$$H(\text{experience}) = w_0 + w_1(\text{experience})$$

looks like a line in 2D.

- 1. How many dimensions do we need to graph $H(\text{experience, GPA}) = w_0 + w_1(\text{experience}) + w_2(\text{GPA})$
- 2. What is the shape of the prediction rule?

Example dataset

For each of *n* people, collect each feature, plus salary:

Person #	Experience	GPA	Salary
1	3	3.7	85,000
2	6	3.3	85,000 95,000 105,000
3	10	3.1	105,000

We represent each person with a feature vector:

$$\vec{x}_1 = \begin{bmatrix} 3 \\ 3.7 \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 6 \\ 3.3 \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 10 \\ 3.1 \end{bmatrix}$$
simple linear regression!
$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

$$(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_n, y_n)$$

$$(\vec{x}_n, y_n)$$

The hypothesis vector

When our prediction rule is

$$H(experience, GPA) = w_0 + w_1(experience) + w_2(GPA),$$

the hypothesis vector $\vec{h} \in \mathbb{R}^n$ can be written

$$\vec{h} = \begin{bmatrix} H(\text{experience}_1, \text{GPA}_1) \\ H(\text{experience}_2, \text{GPA}_2) \\ \dots \\ H(\text{experience}_n, \text{GPA}_n) \end{bmatrix} = \begin{bmatrix} 1 & \text{experience}_1 & \text{GPA}_1 \\ 1 & \text{experience}_2 & \text{GPA}_2 \\ \dots & \dots & \dots \\ 1 & \text{experience}_n & \text{GPA}_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

$$W_0 + W_1 \text{ (experience}_1) + W_2 \text{ (GPA}_1)$$

How do we find \vec{w}^* ?

To find the best parameter vector, \vec{w}^* , we can use the design matrix and observation vector

$$X = \begin{bmatrix} 1 & \text{experience}_1 & \text{GPA}_1 \\ 1 & \text{experience}_2 & \text{GPA}_2 \\ \dots & \dots & \dots \\ 1 & \text{experience}_n & \text{GPA}_n \end{bmatrix}, \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

and solve the **normal equations**

Notice that the rows of the design matrix are the (transposed) feature vectors, with an additional 1 in front.

Notation for multiple linear regression

- We will need to keep track of multiple¹ features for every individual in our data set.
- As before, subscripts distinguish between individuals in our data set. We have *n* individuals (or training examples).
- Superscripts distinguish between features.² We have d features.
 - \triangleright experience = $x^{(1)}$
 - \triangleright GPA = $x^{(2)}$

$$X_{i}^{(j)} = feature j$$

$$for data point$$

$$X_{4}^{(2)} = GiPA \cdot f$$

$$person 4$$

¹In practice, we might use hundreds or even thousands of features.

²Think of them as new variable names, such as new letters.

Augmented feature vectors

The augmented feature vector $Aug(\vec{x})$ is the vector obtained by adding a 1 to the front of feature vector \vec{x} :

$$\vec{x} = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(d)} \end{bmatrix} \qquad \text{Aug}(\vec{x}) = \begin{bmatrix} 1 \\ x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(d)} \end{bmatrix} \qquad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$
our prediction rule is
$$\vec{x}_i \qquad \text{Aug}(\vec{x}_i) = \begin{bmatrix} x_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

Then, our prediction rule is

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \dots + w_d x^{(d)}$$

$$= \vec{w} \cdot \text{Aug}(\vec{x})$$
Aug(\vec{x})

The general problem

We have n data points (or training examples): $(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$ where each \vec{x}_i is a feature vector of d features:

$$\vec{X}_i = \begin{bmatrix} x_i^{(1)} \\ X_i^{(2)} \\ X_i^{(d)} \\ \dots \\ X_i^{(d)} \end{bmatrix}$$

We want to find a good linear prediction rule:

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + ... + w_d x^{(d)}$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

The general solution

Use design matrix

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(d)} \\ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(d)} \\ \dots & \dots & \dots & \dots \\ 1 & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(d)} \end{bmatrix} = \begin{bmatrix} \operatorname{Aug}(\vec{x_1})^T \\ \operatorname{Aug}(\vec{x_2})^T \\ \dots \\ \operatorname{Aug}(\vec{x_n})^T \end{bmatrix}$$

and observation vector to solve the normal equations

$$X^T X \vec{w}^* = X^T \vec{y}$$

to find the optimal parameter vector.

Interpreting the parameters

"hyperplace"

- ▶ With d features, \vec{w} has d + 1 entries.
- \triangleright w_0 is the bias, also known as the intercept.
- $w_1, ..., w_d$ each give the **weight**, i.e. **coefficient**, of a feature. $H(\vec{x}) = w_0 + w_1 x^{(1)} + ... + w_d x^{(d)}$

The sign of w_i tells us about the relationship between *i*th feature and the output of our prediction rule.

Practical demo

Example: predicting sales

- For each of 26 stores, we have:
 - net sales,
 - inventory, -
 - advertising expenditure,
 - district size, and
 - number of competing stores.
- ► Goal: predict net sales given square footage, inventory, etc.
- ► To begin:

 $H(\text{square feet, competitors}) = w_0 + w_1(\text{square feet}) + w_2(\text{competitors})$

Example: predicting sales

 $H(\text{square feet, competitors}) = w_0 + w_1(\text{square feet}) + w_2(\text{competitors})$

Discussion Question

What will be the sign of w_1^* and w_2^* ?

A)
$$W_4^* = +$$
. $W_2^* = -$

B)
$$W_1^{\frac{1}{2}} = +, \quad W_2^{\frac{1}{2}} = +$$

C)
$$W_1^* = -$$
, $W_2^{-} = -$

D)
$$W_{2}^{+}$$
 , W_{2}^{+} = +

Follow along with the demo by clicking	the code link on the
course website next to Lecture 9.	

Interpreting weights

Discussion Question

Which feature has the greatest effect on the outcome?

A) square feet: $w_1^* = 16.202$ B) competing stores: $w_2^* = -5.311$

C) inventory: $w_{\bullet}^{2} = 0.175$

D) advertising: $w_{\bullet}^* = 11.526$ E) district size: $w_{\bullet}^* = 13.580$

) district size: $W_{\mathbf{j}} = 13.580$

To answer, go to menti.com and enter 5115 8817.

Which features are most "important"?

- ► The most important feature is **not necessarily** the feature with largest weight.
- Features are measured in different units, scales.
 - Suppose I fit one prediction rule, H_1 , with sales in dollars, and another prediction rule, H_2 , with sales in thousands of dollars.
 - Sales is just as important in both prediction rules.
 - ▶ But the weight of sales in H_1 will be 1000 times smaller than the weight of sales in H_2 .
 - ► Intuitive explanation: 5 × 45000 = (5 × 1000) × 45.
- ► **Solution**: we should **standardize** each feature, i.e. convert each feature to standard units.

Standard units

Recall from Lecture \circ : to convert a feature $x_1, x_2, ..., x_n$ to standard units, we use the formula

the of SPs
$$x_i$$
 is x_i in standard units = $\frac{x_i - \bar{x}}{\sigma_{x_0}}$

Standard deviation:

$$\sqrt{\frac{1}{4}((-5)^2 + (1)^2 + (1)^2 + (3)^2)} = 3$$

Standardized data:

$$\frac{1-6}{3} = -\frac{5}{3}$$
, $\frac{7-6}{3} = \frac{1}{3}$, $\frac{7-6}{3} = \frac{1}{3}$, $\frac{9-6}{3} = 1$

Standard units for multiple linear regression

- ► The result of standardizing each feature (separately!) is that the units of each feature are on the same scale.
 - There's no need to standardize the outcome (net sales), since it's not being compared to anything.
- Then, solve the normal equations. The resulting $w_0^*, w_1^*, ..., w_d^*$ are called the standardized regression coefficients.
- Standardized regression coefficients can be directly compared to one another.

Let's jump back to our demo notebook.

Feature engineering

MPG vs. Horsepower

Question: Would a linear prediction rule work well on this dataset?

A quadratic prediction rule

► It looks like there's some sort of quadratic relationship between horsepower and mpg in the last scatter plot. We want to try and fit a prediction rule of the form

$$H(x) = w_0 + w_1 x + w_2 x^2$$

- We can do that, by choosing our two "features" to be x_i and x_i^2 , respectively.
 - In other words, $x_i^{(1)} = X_i$ and $x_i^{(2)} = X_i$, herepower.
 - More generally, we can create new features out of existing features.

A quadratic prediction rule

- ▶ Desired prediction rule: $H(x) = w_0 + w_1 x + w_2 x^2$.
- The resulting design matrix looks like this:

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \dots & & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix} \qquad \mathbf{j} = \begin{bmatrix} \mathbf{j}_1 \\ \mathbf{j}_2 \\ \vdots \\ \mathbf{j}_n \end{bmatrix}$$

To find optimal parameter vector \vec{w}^* : solve the **normal** equations!

$$X^T X \mathbf{w}^* = X^T \mathbf{y}$$

More examples

What if we want to use a prediction rule of the form $H(x) = w_1 + w_2 + w_3 + w_4 + w_5 + w_6 + w_6$

What if we want to use a prediction rule of the form $H(x) = w_1 \frac{1}{v^2} + w_2 \sin x + w_3 e^x$?

$$X = \begin{bmatrix} \frac{1}{x_1^2} + w_2 \sin x + w_3 e & \frac{1}{x_2} \\ \frac{1}{x_2^2} + \sin x_1 & e \\ \frac{1}{x_2^2} + \sin x_2 & e \end{bmatrix}$$

Feature engineering

- More generally, we can create new features out of existing information in our dataset. This process is called feature engineering.
 - In this class, feature engineering will mostly be restricted to creating non-linear functions of existing features (as in the previous example).
 - In the future you'll learn how to do other things, like encode categorical information.

$$H(x) = 6_{m_1 x} + 2w(m_2 x)$$

Summary

Summary

- The normal equations can be used to solve the multiple linear regression problem, where we use multiple features to predict an outcome.
- We can interpret the parameters as weights. The signs of weights give meaningful information, but we can only compare weights if our features are standardized.
- We can create non-linear features out of existing features. This process is called feature engineering.
 - ► A prediction rule is linear as long as it is **linear in the parameters**. The features themselves don't have to be linear.

Next time

- ► A few more examples of feature engineering.
- ► A high-level overview of machine learning.
- New idea: clustering.