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Announcements
▶ Homework 4 due tonight at 11:59pm.

▶ Remember to submit Survey 4 after finishing!

▶ Groupwork 5 due Thursday 11/4 at 11:59pm.
▶ Discussion is back to being in-person, Wednesdays
6-6:50pm in Center Hall 113.

▶ Homework 5 due Monday 11/8 at 11:59pm.

▶ Homework 3 grades are out.



Agenda

▶ Recap: the k-Means Clustering algorithm.

▶ Why does k-Means work?

▶ Practical considerations.

▶ Introduction to probability.



k-Means Clustering



Question: how might we “cluster” these points
into groups?



Problem statement: clustering
Goal: Given a list of 𝑛 data points, stored as vectors in ℝ𝑑 ,
⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, and a positive integer 𝑘, place the data points into
𝑘 clusters of nearby points.
▶ Clusters are defined by centroids, 𝜇1, 𝜇2, ..., 𝜇𝑘. Each data
point “belongs” to the group corresponding to the nearest
centroid.

▶ We want to find the centroids that minimize inertia:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖 to its
closest centroid 𝜇𝑗

▶ k-Means Clustering is an algorithm that attempts to
minimize inertia.



k-Means Clustering, i.e. Lloyd’s Algorithm

1. Pick a value of 𝑘 and randomly initialize 𝑘 centroids.

2. Keep the centroids fixed, and update the groups.
▶ Assign each point to the nearest centroid.

3. Keep the groups fixed, and update the centroids.
▶ Move each centroid to the center of its group by
averaging their coordinates.

4. Repeat steps 2 and 3 until the centroids stop changing.



An example by-hand
Suppose we choose the initial centroids 𝜇1 = [

2
1] and 𝜇2 = [

3
4].

Where will the centroids move to after one iteration of
k-Means Clustering?



Follow along with the demo by clicking the code link on the
course website next to Lecture 11.



Why does k-Means work?



What is the goal of k-Means Clustering?

▶ Recall, our goal is to find the centroids 𝜇1, 𝜇2, ..., 𝜇𝑘 that
minimize inertia:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖 to its
closest centroid 𝜇𝑗

▶ Let’s argue that each step of the k-Means Clustering
algorithm reduces inertia.
▶ After enough iterations, inertia will be small enough.



Why does k-Means work? (Step 1)

Let’s look at each step one at a time.
Step 1: Pick a value of 𝑘 and randomly initialize 𝑘 centroids.
▶ After initializing our 𝑘 centroids, we have an initial value
of inertia. We are going to argue that this only decreases.



Why does k-Means work? (Step 2)

Step 2: Keep the centroids fixed, and update the groups by
assigning each point to the nearest centroid.
▶ Assuming the centroids are fixed, for each ⃗𝑥𝑖 we have a
choice — which group should it be a part of?

▶ Whichever group we choose, inertia will be calculated
using the squared distance between ⃗𝑥𝑖 and that group’s
centroid.

▶ Thus, to minimize inertia, we assign each ⃗𝑥𝑖 to the group
corresponding to the closest centroid.

Note that this analysis holds every time we’re at Step 2, not
just the first time.



Why does k-Means work? (Step 3)

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).
▶ Before we justify why this is optimal, let’s re-visit inertia.



Aside: separating inertia
▶ Inertia:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖to its
closest centroid 𝜇𝑗

▶ Note that an equivalent way to write inertia is

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = 𝐶(𝜇1) + 𝐶(𝜇2) + ... + 𝐶(𝜇𝑘) where
𝐶(𝜇𝑗) = total squared distance of each

data point ⃗𝑥𝑖 in group 𝑗
to centroid 𝜇𝑗

▶ What’s the point?



Why does k-Means work? (Step 3)

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = 𝐶(𝜇1) + 𝐶(𝜇2) + ... + 𝐶(𝜇𝑘) where
𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖

in group 𝑗 to centroid 𝜇𝑗

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).
▶ Let’s argue why this minimizes 𝐶(𝜇𝑗), for each group 𝑗.



Why does k-Means work? (Step 3)

𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖
in group 𝑗 to centroid 𝜇𝑗

Suppose group 𝑗 contains the points (4, 3), (6, 4), and (8, 2).
Where should we put 𝜇𝑗 = [

𝑎
𝑏] to minimize 𝐶(𝜇𝑗)?



Why does k-Means work? (Step 3)



Why does k-Means work? (Step 3)

𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖
in group 𝑗 to centroid 𝜇𝑗

Suppose group 𝑗 contains the points (4, 3), (6, 4), and (8, 2).
Where should we put 𝜇𝑗 = [

𝑎
𝑏] to minimize 𝐶(𝜇𝑗)?



Cost and empirical risk

▶ On the previous slide, we saw a function of the form

𝐶(𝜇𝑗) = 𝐶(𝑎, 𝑏) = (4 − 𝑎)2 + (3 − 𝑏)2

+ (6 − 𝑎)2 + (4 − 𝑏)2

+ (8 − 𝑎)2 + (2 − 𝑏)2

▶ 𝐶(𝑎, 𝑏) can be thought of as the sum of two separate
functions, 𝑓(𝑎) and 𝑔(𝑏).
▶ 𝑓(𝑎) = (4 − 𝑎)2 + (6 − 𝑎)2 + (8 − 𝑎)2 computes the total
squared distance of each 𝑥1 coordinate to 𝑎.

▶ From earlier in the course, we know that 𝑎∗ = 4+6+8
3 = 6

minimizes 𝑓(𝑎).



Practical considerations



Initialization
▶ Depending on our initial centroids, k-Means may
“converge” to a clustering that doesn’t actually have the
lowest possible inertia.
▶ In other words, like gradient descent, k-Means can
get caught in a local minimum.

▶ Some solutions:
▶ Run k-Means several times, each with different
randomly chosen initial centroids. Keep track of the
inertia of the final result in each attempt. Choose the
attempt with the lowest inertia.

▶ k-Means++: choose one initial centroid at random,
and choose the remaining initial centroids by
maximizing distance from all other centroids.

http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf


Choosing 𝑘

▶ Note that as 𝑘 increases, inertia decreases.
▶ Intuitively, as we add more centroids, the distance
between each point and its closest centroid will drop.

▶ But the goal of clustering is to put data points into
groups, and having a large number of groups may not be
meaningful.

▶ This suggests a tradeoff between 𝑘 and inertia.



The “elbow” method
▶ Strategy: run k-Means Clustering for many choices of 𝑘
(e.g. 𝑘 = 1, 2, 3, ..., 8).

▶ Compute the value of inertia for each resulting set of
centroids.

▶ Plot a graph of inertia vs 𝑘.
▶ Choose the value of 𝑘 that appears at an “elbow”.

See the notebook for a demo.



Low inertia isn’t everything!

▶ Even if k-Means works as intended and finds the choice of
centroids that minimize inertia, the resulting clustering
may not look “right” to us humans.
▶ Recall, inertia measures the total squared distance to
centroids.

▶ This metric doesn’t always match our intuition.

▶ Let’s look at some examples at
https://tinyurl.com/40akmeans.
▶ Go to “I’ll Choose” and “Smiley Face”. Good luck!

https://tinyurl.com/40akmeans




Other clustering techniques

▶ k-Means Clustering is just one way to cluster data.

▶ There are many others, each of which work differently and
produce different kinds of results.

▶ Another common technique: agglomerative clustering.
▶ High level: start out with each point being in its own
cluster. Repeatedly combine clusters until only 𝑘 are
left.

▶ Check out this chart.

https://scikit-learn.org/stable/_images/sphx_glr_plot_cluster_comparison_001.png


Introduction to probability



From Lecture 1: course overview

Part 1: Learning from Data (Lectures 1-11)
▶ Summary statistics and loss functions; mean absolute
error and mean squared error.

▶ Linear regression (incl. linear algebra).

▶ Clustering.

Part 2: Probability (Lectures 12-18)
▶ Set theory and combinatorics; probability fundamentals.

▶ Conditional probability and independence.

▶ Naïve Bayes (mix of both parts of the class).



Why do we need probability?

▶ So far in this class, we have made predictions based on a
dataset.

▶ This dataset can be thought of as a sample of some
population.

▶ For a prediction rule to be useful in the future, the sample
that was used to create the prediction rule needs to look
similar to samples that we’ll see in the future.



Probability and statistics



Statistical inference

Given observed data, we want to know how it was generated
or where it came from, for the purposes of
▶ predicting outcomes for other data generated from the
same source.

▶ know how different our sample could have been.

▶ draw conclusions about our entire population and not
just our observed sample (i.e. generalize).



Probability

Given a certain model for data generation, what kind of data
do you expect the model to produce? How similar is it to the
data you have? Probability is the tool to answer these
questions.
▶ expected value vs. sample mean.

▶ variance vs. sample variance.

▶ likelihood of producing exact observed data.



Terminology

▶ An experiment is some process whose outcome is random
(e.g. flipping a coin, rolling a die).

▶ A sample space, 𝑆, is the set of all possible outcomes of
an experiment.
▶ Could be finite or infinite!

▶ An event is a subset of the sample space.
Example: Rolling a 6-sided die.



Probability distributions

▶ A probability distribution, 𝑝, describes the probability of
each outcome 𝑠 in a sample space 𝑆.
▶ The probability of each outcome must be between 0
and 1: 0 ≤ 𝑝(𝑠) ≤ 1.

▶ The sum of the probabilities of each outcome must
be exactly 1: ∑𝑠∈𝑆 𝑝(𝑠) = 1.

▶ The probability of an event is the sum of the probabilities
of the outcomes in the event.
▶ 𝑃(𝐸) = ∑𝑠∈𝐸 𝑝(𝑠).





Equally-likely outcomes
▶ If 𝑆 is a sample space with 𝑛 possible outcomes, and all
outcomes are equally-likely, then the probability of any
one outcome occurring is 1

𝑛 .

▶ The probability of an event 𝐴, then, is

𝑃(𝐴) = 1𝑛 +
1
𝑛 + ... +

1
𝑛 =

# of outcomes in A
# of outcomes in S =

|𝐴|
𝑆

▶ Example: Flipping a coin three times.



Summary, next time



Summary
▶ k-Means Clustering attempts to minimize inertia.

▶ We showed that it minimizes inertia on each step, but
it’s possible that it converges to a local minimum.

▶ Different initial centroids can lead to different
clusterings.

▶ To choose 𝑘, the number of clusters, we can use the
elbow method.

▶ Other clustering techniques may work better than
k-Means Clustering in certain cases.

▶ Outcomes, sample spaces, and events are the “building
blocks” of probability.



Next time

▶ A deep-dive on the fundamentals rules of probability.

▶ Important: We’ve posted many probability resources on
the resources tab of the course website. These will no
doubt come in handy.
▶ No more DSC 40A-specific readings.


