
Lecture 13 – Combinatorics

DSC 40A, Fall 2021 @ UC San Diego Suraj Rampure, with help from many others

Announcements

- Please submit Survey 5!
- ► Groupwork 6 due Friday 11/12 at 11:59pm.
- Homework 6 due **Tuesday 11/16 at 11:59pm**.
- Homework 4 grades are out.
- **Note:** No lecture or OH on Thursday.
 - Use it to take a break! :)

Agenda

- Sequences, permutations, and combinations.
- Practice problems.

Sequences, permutations, and combinations

Motivation

Many problems in probability involve counting.

Suppose I flip a fair coin 100 times. What's the probability I see 34 heads?

Suppose I draw 3 cards from a 52 card deck. What's the probability they all are all from the same suit?

- In order to solve such problems, we first need to learn how to count.
- The area of math that deals with counting is called combinatorics.

Selecting elements (i.e. sampling)

- Many experiments involve choosing k elements randomly from a group of n possible elements. This group is called a population.
 - If drawing cards from a deck, the population is the deck of all cards.
 - If selecting people from DSC 40A, the population is everyone in DSC 40A.
- Two decisions:
 - Do we select elements with or without replacement?
 - Does the order in which things are selected matter?

Sequences

- A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
- Example: Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.

Example: A UCSD PID starts with "A" then has 8 digits. How many UCSD PIDs are possible?

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that **repetition is allowed** and **order matters** is n^k .

(Note: We mentioned this fact in the first lecture on clustering!)

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- **Example:** How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Permutations

In general, the number of ways to select k elements from a group of n possible elements such that repetition is not allowed and order matters is

$$P(n,k) = (n)(n-1)...(n-k+1)$$

▶ To simplify: recall that the definition of *n*! is

$$n! = (n)(n - 1)...(2)(1)$$

Given this, we can write

$$P(n,k)=\frac{n!}{(n-k)!}$$

Discussion Question

UCSD has 7 colleges. How many ways can I rank my top 3 choices?

- A) 21
- B) 210
- C) 343
- D) 2187
- E) None of the above

To answer, go to menti.com and enter 3779 0977.

Special case of permutations

Suppose we have n people. The total number of ways I can rearrange these n people in a line is

This is consistent with the formula

$$P(n,n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = \frac{n!}{1} = n!$$

Combinations

- A combination is a set of k items selected from a group of n possible elements without replacement, such that order does not matter.
- Example: There are 24 ice cream flavors. How many ways can you pick two flavors?

From permutations to combinations

- There is a close connection between:
 - the number of permutations of k elements selected from a group of n, and
 - the number of combinations of k elements selected from a group of n

Since # permutations = n!/(n-k)! and # orderings of k items = k!, we have

$$C(n,k) = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Combinations

In general, the number of ways to select *k* elements from a group of *n* elements such that **repetition is not allowed** and **order does not matter** is

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

The symbol $\binom{n}{k}$ is pronounced "*n* choose *k*", and is also known as the **binomial coefficient**.

Example: committees

How many ways are there to select a president, vice president, and secretary from a group of 8 people?

How many ways are there to select a committee of 3 people from a group of 8 people?

If you're ever confused about the difference between permutations and combinations, come back to this example.

Discussion Question

A domino consists of two faces, each with anywhere between 0 and 6 dots. A set of dominoes consists of every possible combination of dots on each face. How many dominoes are in the set of dominoes?

A)
$$\binom{7}{2}$$

B) $\binom{7}{1} + \binom{7}{2}$
C) $P(7, 2)$
D) $\frac{P(7, 2)}{P(7, 1)}7!$

To answer, go to menti.com and enter 3779 0977.

More examples

Counting and probability

- ► If S is a sample space consisting of equally-likely outcomes, and A is an event, then $P(A) = \frac{|A|}{|S|}$.
- In many examples, this will boil down to using permutations and/or combinations to count |A| and |S|.
- Tip: Before starting a probability problem, always think about what the sample space S is!

Selecting students - overview

We're going to start by answering the same question using several different techniques.

Selecting students (Method 1: using permutations)

Selecting students (Method 2: using permutations and the complement)

Question 1, Part 1 (Denominator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals could you draw?

Question 1, Part 2 (Numerator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals include Billy?

Selecting students (Method 4: "the easy way")

With vs. without replacement

Discussion Question

We've determined that a probability that a random sample of 5 students from a class of 20 **without replacement** contains Billy (one student in particular) is $\frac{1}{4}$. Suppose we instead sampled **with replacement**. Would the resulting probability be equal to, greater than, or less than $\frac{1}{4}$?

- A) Equal to
- B) Greater than
- C) Less than

To answer, go to menti.com and enter 3779 0977.

Another example

Question 2, Part 1: We have 12 pets, 5 dogs and 7 cats. In how many ways can we select 4 pets?

Another example

Question 2, Part 2: We have 12 pets, 5 dogs and 7 cats. In how many ways can we select 4 pets such that we have...

- 1. 2 dogs and 2 cats?
- 2. 3 dogs and 1 cat?
- 3. At least 2 dogs?

Another example

Question 2, Part 3: We have 12 pets, 5 dogs and 7 cats. We randomly select 4 pets. What's the probability that we selected at least 2 dogs?

Yet another example

Question 3: Suppose we flip a fair coin 10 times. What is the probability that we see an equal number of heads and tails?

- 1. What is the probability that we see the specific sequence THTTHTHHTH?
- 2. What is the probability that we see an equal number of heads and tails?

One step further

Question 4: Suppose we flip a coin **that is not fair**, but instead has $P(\text{heads}) = \frac{1}{3}$, 10 times. Assume that each flip is independent.

- 1. What is the probability that we see the specific sequence THTTHTHHTH?
- 2. What is the probability that we see an equal number of heads and tails?

Summary

Summary

- A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
 - Number of sequences: n^k .
- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.

Number of permutations: $P(n, k) = \frac{n!}{(n-k)!}$.

A combination is obtained by selecting k elements from a group of n possible elements without replacement, such that order does not matter.

Number of combinations:
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$
.