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Announcements
▶ Homework 8 is due tomorrow 12/3 at 11:59pm.
▶ A recording of Discussion 8 (probability review) is posted
on the course website and on Campuswire.

▶ Fill out CAPEs + the End-of-Quarter survey. If 90% of the
class does both, everyone gets 0.5% extra credit added to
their final course grade.
▶ Deadline: Monday at 8am.

▶ The Final Exam is on Wednesday 12/8 from
11:30AM-2:30PM.
▶ You’ll take the exam remotely by downloading a PDF
from Gradescope and submitting your answers as a
PDF by the deadline.

▶ Open internet, but no Googling for the answers, and
no collaboration.

▶ More details to come this weekend.



Final preparation

▶ Review the solutions to previous homeworks and
groupworks.
▶ All except Homework 8 are up.

▶ Identify which concepts are still iffy. Re-watch lecture,
post on Campuswire, come to office hours.
▶ We have many office hours between now and the
exam.

▶ Look at the past exams at
https://dsc40a.com/resources.
▶ Watch the probability review discussion.

▶ Study in groups.
▶ Make a “cheat sheet”.

https://dsc40a.com/resources


Agenda

▶ High-level summary of the course.

▶ Review problems.

▶ Conclusion.



What was this course about?



Part 1: Supervised learning (Lectures 1-10)

The “learning from data” recipe to make predictions:
1. Choose a prediction rule. We’ve seen a few:

▶ Constant: 𝐻(𝑥) = ℎ.
▶ Simple linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.
▶ Multiple linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + ... + 𝑤𝑑𝑥(𝑑).

2. Choose a loss function.
▶ Absolute loss: 𝐿(ℎ, 𝑦) = |𝑦 − ℎ|.
▶ Squared loss: 𝐿(ℎ, 𝑦) = (𝑦 − ℎ)2.
▶ 0-1 loss, UCSD loss, etc.

3. Minimize empirical risk to find optimal parameters.
▶ Algebraic arguments.
▶ Calculus (including vector calculus).
▶ Gradient descent.





Part 1: Unsupervised learning (Lectures 10-11)

▶ When learning how to fit prediction rules in Lectures 1-10,
we were performing supervised machine learning.

▶ In Lectures 10 and 11, we discussed 𝑘-Means Clustering,
an unsupervised machine learning method.
▶ Supervised learning: there is a “right answer” that we
are trying to predict.

▶ Unsupervised learning: there is no right answer,
instead we’re trying to find patterns in the structure
of the data.



Part 2: Probability fundamentals (Lectures 11-12)

▶ If all outcomes in the sample space 𝑆 are equally likely,
then 𝑃(𝐴) = |𝐴|

|𝑆| .
▶ �̄� is the complement of event 𝐴. 𝑃(�̄�) = 1 − 𝑃(𝐴).
▶ Two events 𝐴, 𝐵 are mutually exclusive if they share no
outcomes, i.e. they don’t overlap. In this case, the
probability that 𝐴 happens or 𝐵 happens is
𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).

▶ More generally, for any two events,
𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).

▶ The probability that events 𝐴 and 𝐵 both happen is
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴).
▶ 𝑃(𝐵|𝐴) is the probability that 𝐵 happens given that
you know 𝐴 happened.

▶ Through re-arranging, we see that 𝑃(𝐵|𝐴) = 𝑃(𝐴∩𝐵)
𝑃(𝐴) .



Part 2: Combinatorics (Lectures 13-14)

▶ A sequence is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements with replacement, such that
order matters.
▶ Number of sequences: 𝑛𝑘.

▶ A permutation is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements without replacement, such
that order matters.
▶ Number of permutations: 𝑃(𝑛, 𝑘) = 𝑛!

(𝑛−𝑘)! .

▶ A combination is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements without replacement, such
that order does not matter.
▶ Number of combinations: (𝑛𝑘) =

𝑛!
(𝑛−𝑘)!𝑘! .



Part 2: The law of total probability and Bayes’
theorem (Lecture 14)
▶ A set of events 𝐸1, 𝐸2, ..., 𝐸𝑘 is a partition of 𝑆 if each
outcome in 𝑆 is in exactly one 𝐸𝑖.

▶ The law of total probability states that if 𝐴 is an event and
𝐸1, 𝐸2, ..., 𝐸𝑘 is a partition of 𝑆, then

𝑃(𝐴) = 𝑃(𝐸1) ⋅ 𝑃(𝐴|𝐸1) + 𝑃(𝐸2) ⋅ 𝑃(𝐴|𝐸2) + ... + 𝑃(𝐸𝑘) ⋅ 𝑃(𝐴|𝐸𝑘)

=
𝑘
∑
𝑖=1
𝑃(𝐸𝑖) ⋅ 𝑃(𝐴|𝐸𝑖)

▶ Bayes’ theorem states that

𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)𝑃(𝐴)
▶ We often re-write the denominator 𝑃(𝐴) in Bayes’ theorem
using the law of total probability.



Part 2: Independence and conditional
independence (Lecture 15)
▶ Two events 𝐴 and 𝐵 are independent when knowledge of
one event does not change the probability of the other
event.
▶ Equivalent conditions: 𝑃(𝐵|𝐴) = 𝑃(𝐵), 𝑃(𝐴|𝐵) = 𝑃(𝐴),
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵).

▶ Two events 𝐴 and 𝐵 are conditionally independent if they
are independent given knowledge of a third event, 𝐶.
▶ Condition: 𝑃((𝐴 ∩ 𝐵)|𝐶) = 𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶).

▶ In general, there is no relationship between
independence and conditional independence.

▶ See pinned post on Campuswire for clarification.





Part 2: Naive Bayes (Lecture 16-17)
▶ In classification, our goal is to predict a discrete category,
called a class, given some features.

▶ The Naive Bayes classifier works by estimating the
numerator of 𝑃(class|features) for all possible classes.

▶ It uses Bayes’ theorem:

𝑃(class|features) = 𝑃(class) ⋅ 𝑃(features|class)𝑃(features)

▶ It also uses a “naive” simplifying assumption, that
features are conditionally independent given a class:

𝑃(features|class) = 𝑃(feature1|class) ⋅ 𝑃(feature2|class) ⋅ ...





Review problems



Example: Clustering and combinatorics

▶ Suppose we have a dataset of 15 points, each with two
features (𝑥1, 𝑥2). In the dataset, there exist 3 “natural”
clusters, each of which contain 5 data points.

▶ Recall that in the k-Means Clustering algorithm, we
initialize 𝑘 centroids by choosing 𝑘 points at random from
our dataset. Suppose 𝑘 = 3.



1. What’s the probability that all three initial centroids are
initialized in the same natural cluster?

2. What’s the probability that all three initial centroids are
initialized in different natural clusters?



Example: basketball

Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Suppose

we have three teams, “Team USA”, “Team China”, and “Team
Lithuania”. How many ways can these teams be formed?



Example: basketball, again
Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Now,

suppose the teams are irrelevant, and all we care about is the
unique pairings themselves. How many ways can these 6
players be split into 3 teams?



Example: high school
A certain high school has 80 students: 20 freshmen, 20
sophomores, 20 juniors, and 20 seniors. If a random sample of
20 students is drawn without replacement, what is the
probability that the sample contains 5 students in each grade
level?



Example: high school, again
A certain high school has 80 students: 20 freshmen, 20
sophomores, 20 juniors, and 20 seniors. If a random sample of
20 students is drawn with replacement, what is the probability
that all students in the sample are from the same grade level?



Example: bitstrings
What is the probability of a randomly generated bitstring of
length 5 having the same first two bits? Assume that each bit
is equally likely to be a 0 or a 1.



Example: bitstrings, again
What is the probability of a randomly generated bitstring of
length 5 having the same first two bits, if we know that the
bitstring has exactly four 0s? Assume that each bit is equally
likely to be a 0 or a 1.



Conclusion



Learning objectives
At the start of the quarter, we told you that by the end of DSC
40A, you’ll...
▶ understand the basic principles underlying almost every
machine learning and data science method.

▶ be better prepared for the math in upper division: vector
calculus, linear algebra, and probability.

▶ be able to tackle problems such as:
▶ How do we know if an avocado is going to be ripe
before we eat it?

▶ How do we teach a computer to read handwritten
text?

▶ How do we predict a future data scientist’s salary?



What’s next?
In DSC 40A, we just scratched the surface of the theory behind
data science. In future courses, you’ll build upon your
knowledge from DSC 40A, and will learn:
▶ More supervised learning.

▶ Logistic regression, decision trees, neural networks,
etc.

▶ More unsupervised learning.
▶ Other clustering techniques, PCA, etc.

▶ More probability.
▶ Random variables, distributions, etc.

▶ More connections between all of these areas.
▶ For instance, you’ll learn how probability is related to
linear regression.

▶ More practical tools.



Note on grades

Moral of the story: good grades aren’t everything.



Thank you!

▶ This course would not have been possible without our TA:
Harpreet Singh.

▶ It also would not have been possible without our 6 tutors:
Jianming Geng, Yujian (Ken) He, Shiv Sakthivel, Aryaman
Sinha, Luning Yang, and Sheng Yang.

▶ You can contact them with any questions at
dsc40a.com/staff.

https://dsc40a.com/staff
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