#### **Lecture 18 - Review, Conclusion**



**DSC 40A, Fall 2021 @ UC San Diego** Suraj Rampure, with help from many others

#### **Announcements**

- ► Homework 8 is due tomorrow 12/3 at 11:59pm.
- A recording of Discussion 8 (probability review) is posted on the course website and on Campuswire.
- ► Fill out CAPEs + the End-of-Quarter survey. If 90% of the class does both, everyone gets 0.5% extra credit added to their final course grade.
  - Deadline: Monday at 8am.
- ► The Final Exam is on Wednesday 12/8 from 11:30AM-2:30PM.
  - You'll take the exam remotely by downloading a PDF from Gradescope and submitting your answers as a PDF by the deadline.
  - Open internet, but no Googling for the answers, and no collaboration.
  - More details to come this weekend.

# Final preparation -> cumulative!!!

- Review the solutions to previous homeworks and groupworks.
  - All except Homework 8 are up.
- Identify which concepts are still iffy. Re-watch lecture, post on Campuswire, come to office hours.
  - We have many office hours between now and the exam.
- Look at the past exams at https://dsc4oa.com/resources.
  - Watch the probability review discussion.
- Study in groups.
- Make a "cheat sheet".

#### **Agenda**

- High-level summary of the course.

   Midten review session has more!
- ► Review problems.
- ► Conclusion.



#### Part 1: Supervised learning (Lectures 1-10)

The "learning from data" recipe to make predictions:

- 1. Choose a prediction rule. We've seen a few:
  - ightharpoonup Constant: H(x) = h.
  - Simple linear:  $H(x) = w_0 + w_1 x$ .
  - Multiple linear:  $H(x) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + ... + w_d x^{(d)}$ .
- 2. Choose a loss function.
  - Absolute loss: L(h, y) = |y h|.
  - Squared loss:  $L(h, y) = (y h)^2$ .
  - 0-1 loss, UCSD loss, etc.
- 3. Minimize empirical risk to find optimal parameters.
  - Algebraic arguments.
  - Calculus (including vector calculus).
  - Gradient descent.

loss f'n over dato set

constant pred, abs loss:

$$R_{abs}(h) = \frac{1}{m} \left( \frac{2}{1-h} \right) y_i - h$$

simple linear, sq loss:

simple linear, sq loss:

$$R_{sq}(\omega_0, \omega_1) = \frac{2}{n} \frac{2}{(y_1 - (\omega_0 + \omega_1 \pi_1))^2}$$

multiple linear, sq loss:

 $R_{sq}(\vec{\omega}) = \frac{1}{n} \frac{1}{|\vec{y}|^2} - |\vec{y}|^2$ 

obs
vector design matrix

#### Part 1: Unsupervised learning (Lectures 10-11)

- When learning how to fit prediction rules in Lectures 1-10, we were performing supervised machine learning.
- In Lectures 10 and 11, we discussed *k*-Means Clustering, an unsupervised machine learning method.
  - Supervised learning: there is a "right answer" that we are trying to predict.

Unsupervised learning: there is no right answer, instead we're trying to find patterns in the structure of the data.



#### Part 2: Probability fundamentals (Lectures 11-12)

- If all outcomes in the sample space S are equally likely, then  $P(A) = \frac{|A|}{|S|}$ .
- $ightharpoonup \bar{A}$  is the **complement** of event A.  $P(\bar{A}) = 1 P(A)$ .
- Two events A, B are mutually exclusive if they share no outcomes, i.e. they don't overlap. In this case, the probability that A happens or B happens is  $P(A \cup B) = P(A) + P(B)$ .
- $P(A \cup B) = P(A) + P(B)$ .

  More generally, for any two events,  $P(A \cup B) = P(A) + P(B) P(A \cap B)$ .

  Principle of the princ
- The probability that events A and B both happen is  $P(A \cap B) = P(A)P(B|A)$ .
  - P(B|A) is the probability that B happens given that you know A happened.
  - Through re-arranging, we see that  $P(B|A) = \frac{P(A \cap B)}{P(A)}$ .

#### Part 2: Combinatorics (Lectures 13-14)

- A **sequence** is obtained by selecting k elements from a group of *n* possible elements with replacement, such that order matters.
  - Number of sequences:  $n^k$ .
- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Number of permutations:  $P(n, k) = \frac{n!}{(n-k)!}$ .

  A combination is obtained by selecting k elements from a group of *n* possible elements without replacement, such that order does not matter.
  - Number of combinations:  $\binom{n}{b} = \frac{n!}{(n-b)!b!}$ .

# Part 2: The law of total probability and Bayes' theorem (Lecture 14)

- A set of events  $E_1, E_2, ..., E_k$  is a partition of S if each outcome in S is in exactly one  $E_i$ .
- The law of total probability states that if A is an event and  $E_1, E_2, ..., E_k$  is a partition of S, then

$$P(A) = P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2) + \dots + P(E_k) \cdot P(A|E_k)$$

$$= \sum_{i=1}^{R} P(E_i) \cdot P(A|E_i)$$

Bayes' theorem states that

$$P(B|A) = P(B) P(A|B)$$

$$P(A)$$

We often re-write the denominator P(A) in Bayes' theorem using the law of total probability.

#### Part 2: Independence and conditional independence (Lecture 15)

- Two events A and B are independent when knowledge of one event does not change the probability of the other event.
- Equivalent conditions: P(B|A) = P(B), P(A|B) = P(A),  $P(A \cap B) = P(A) \cdot P(B)$ .  $P(A \cap B) = P(A) P(B \cap A)$   $= P(A) P(B \cap A)$ Two events A and B are conditionally independent if they
- are independent given knowledge of a third event. C.
  - ightharpoonup Condition:  $P((A \cap B)|C) = P(A|C) \cdot P(B|C)$ .
- In general, there is no relationship between independence and conditional independence.
- See pinned post on Campuswire for clarification.

#### Part 2: Naive Bayes (Lecture 16-17)

In classification, our goal is to predict a discrete category, called a **class**, given some features.

- The Naive Bayes classifier works by estimating the numerator of P(class|features) for all possible classes.
- ► It uses Bayes' theorem:

$$P(\text{class}|\text{features}) = \frac{P(\text{class}) \cdot P(\text{features}|\text{class})}{P(\text{features})}$$

► It also uses a "naive" simplifying assumption, that features are conditionally independent given a class:

$$P(\text{feature}_1|\text{class}) \cdot P(\text{feature}_2|\text{class}) \cdot \dots$$

## **Review problems**

#### **Example: Clustering and combinatorics**

Suppose we have a dataset of 15 points, each with two features  $(x_1, x_2)$ . In the dataset, there exist 3 "natural" clusters, each of which contain 5 data points.

Recall that in the k-Means Clustering algorithm, we initialize k centroids by choosing k points at random from our dataset. Suppose k = 3.

=) (15) ways to

need to pick 3
points from
15 to

 $\frac{3\binom{5}{3}}{\binom{15}{3}} = \frac{4}{14} \cdot \frac{3}{13}$ 

2. What's the probability that all three initial centroids are initialized in different natural clusters?

Proof that 
$$\frac{3}{(\frac{3}{2})} = \frac{4 \cdot \frac{3}{13}}{\frac{1}{13}}$$
  

$$\frac{3}{(\frac{5}{2})} = \frac{3 \cdot \frac{5!}{2! \cdot 3!}}{\frac{15!}{12! \cdot 3!}} = \frac{3 \cdot \cancel{5} \cdot \cancel{4} \cdot \cancel{3}}{\cancel{15} \cdot \cancel{15} \cdot \cancel{15} \cdot \cancel{15}}$$

$$= \frac{4 \cdot \cancel{3}}{\cancel{15} \cdot \cancel{15} \cdot \cancel{15}$$

#### **Example: basketball**

Suppose we have 6 basketball players who want to organize themselves into 3 basketball teams of 2 players each. Suppose

we have three teams, "Team USA", "Team China", and "Team Lithuania". How many ways can these teams be formed?

#### Example: basketball, again

Suppose we have 6 basketball players who want to organize themselves into 3 basketball teams of 2 players each. Now,

suppose the teams are irrelevant, and all we care about is the unique pairings themselves. How many ways can these 6 players be split into 3 teams?

players be split into 3 teams?
$$\binom{n}{2} = \frac{n \binom{n-1}{2}}{2} \qquad \binom{6}{2} \binom{4}{2} \binom{2}{2} = \frac{6.5}{2}.6$$

$$3!$$

### Example: high school

A certain high school has 80 students: 20 freshmen, 20 sophomores, 20 juniors, and 20 seniors. If a random sample of 20 students is drawn without replacement, what is the probability that the sample contains 5 students in each grade



## Example: high school, again

A certain high school has 80 students: 20 freshmen, 20 sophomores, 20 juniors, and 20 seniors. If a random sample of 20 students is drawn with replacement, what is the probability that all students in the sample are from the same grade level?

P(all freshmen) = 
$$(\frac{1}{4}) \cdot (\frac{1}{4}) \cdot \dots = (\frac{1}{4})^{\frac{20}{4}}$$

P(all same) =  $4 \cdot (\frac{1}{4})^{\frac{20}{4}} = (\frac{1}{4})^{\frac{19}{4}}$ 

All 19 peaple need to match first

# Example: bitstrings 😘 🐧 🛚 🖰 🖰

What is the probability of a randomly generated bitstring of length 5 having the same first two bits? Assume that each bit is equally likely to be a 0 or a 1.

### Example: bitstrings, again

What is the probability of a randomly generated bitstring of length 5 having the same first two bits, if we know that the bitstring has exactly four 0s? Assume that each bit is equally likely to be a 0 or a 1.



## **Conclusion**

#### **Learning objectives**

At the start of the quarter, we told you that by the end of DSC 40A, you'll...

- understand the basic principles underlying almost every machine learning and data science method.
- be better prepared for the math in upper division: vector calculus, linear algebra, and probability.
- be able to tackle problems such as:
  - How do we know if an avocado is going to be ripe before we eat it?
  - How do we teach a computer to read handwritten text?
    - How do we predict a future data scientist's salary?

#### What's next?

In DSC 40A, we just scratched the surface of the theory behind data science. In future courses, you'll build upon your knowledge from DSC 40A, and will learn:

- More supervised learning.
  - Logistic regression, decision trees, neural networks, etc.
- More unsupervised learning.
  - Other clustering techniques, PCA, etc.
- More probability.
  - Random variables, distributions, etc.
- More connections between all of these areas.
  - For instance, you'll learn how probability is elated to linear regression.
- More practical tools.

### Note on grades

| Fall 2016            |                                                       |     |          |
|----------------------|-------------------------------------------------------|-----|----------|
| Class                | Title                                                 | Un. | Gr       |
| CHEM 1A              | General Chemistry                                     | 3   | B-       |
| CHEM 1AL             | General Chemistry Laboratory                          | 1   | C+       |
| COMPSCI 61A          | The Structure and Interpretation of Computer Programs | 4   | B+       |
| COMPSCI 70           | Discrete Mathematics and Probability Theory           | 4   | Α        |
| COMPSCI 195          | Social Implications of Computer Technology            | 1   | Ρ        |
| MATH 1A              | Calculus                                              | 4   | A+       |
| Spring 2017          |                                                       |     |          |
|                      |                                                       |     |          |
| Class<br>COMPSCI 61B | Title Data Structures                                 | Un. | Gr<br>B+ |
|                      |                                                       |     | _        |
| COMPSCI 97           | Field Study                                           | 1   | Р        |
| COMPSCI 197          | Field Study                                           | 1   | Ρ        |
| ELENG 16A            | Designing Information Devices and Systems I           | 4   | B-       |
| MATH 110             | Linear Algebra                                        | 4   | С        |
|                      |                                                       |     |          |

Moral of the story: good grades aren't everything.

#### Thank you!

- ► This course would not have been possible without our TA: Harpreet Singh.
- It also would not have been possible without our 6 tutors: Jianming Geng, Yujian (Ken) He, Shiv Sakthivel, Aryaman Sinha, Luning Yang, and Sheng Yang.
- You can contact them with any questions at dsc40a.com/staff.

