


Agenda

Bird's eye view of the course.
Select past exam problems.

Review of select problems from Homeworks 1, 2, and 3.



Bird's eye view of the course



What is this course about?

So far, this course has really been about one thing:
learning from data.

The recipe:
Choose a prediction rule.

Choose a loss function.

Minimize empirical risk, i.e. average loss, on your
dataset to find the best predictions/parameters.

Let’s look at all of this a little more deeply.



Choosing a prediction rule

In lecture, we've studied two prediction rules in depth:
The constant hypothesis, h (Lectures 1-5).

We didn’t call it a “prediction rule” at the time, but it
is one.

Equivalent to saying H(x) = h, i.e. we predict the same
output for everyone.

The simple linear prediction rule, H(x) = w, + w, X
(Lectures 6-7).

Now, predictions vary depending on x (x is called a
feature).

You also looked at H(x) = w,x in Homework 3, 1f.



Some questions...

Suppose I've chosen to use a constant prediction rule h.
Which h do | use?

Suppose I've chosen to use a simple linear prediction rule
H(x) = w, + w,x. What should w, and w, be?

Answer: Loss functions can help us.



Loss functions

A loss function L(h, y) measures how a prediction h is
from the truth y.

We've seen several loss functions so far: ,-.d-‘dd
Absolute loss: L(h,y) = |y - h]. lad‘“’Q’V

A‘,{olu“’l Qe /v

Squared loss: L(h,y) = (y - h)?. 71“"‘A error
UCSD loss: L(h,y) = 1 - e -?*/0*,
0-1loss: L(h,y) = 0 if h =y, otherwise 1.

Different loss functions have different properties, the key
ones being their ease of minimization and their
robustness to outliers.



Empirical risk

Loss functions are great — but they only measure the
quality of a single prediction for a single true value.

In order to get a sense of the quality of a prediction on
our entire dataset, we must take the average of our
chosen loss function over our entire dataset.

The result is called empirical risk:

,Fwﬂrko* 'f h'_ﬂ.’)= ;L(h yl

If using absolute loss, R is called mean absolute
error.

3|—\

If using squared loss, R is called mean squared error.



The constant hypothesis, h
To find the best h (denoted as h*) to make constant
predictions with, we need to choose a loss function.

If we choose absolute loss, the resulting empirical risk
(i.e. mean absolute error) is

1 n
Raps(h) = — > 1y; = hl
i=1

If we choose squared loss, the resulting empirical risk (i.e.
mean squared error) is

n

Ryg(h) = = > (3, - hY?

i=1

We also looked at the resulting empirical risk when we
choose 0-1 loss and UCSD loss.



The simple linear prediction rule, H(x) = w, + w, X
M\—UL"(" cw&
w, and w; are called parameters. To find the optimal

parameters (denoted as wg and w;), we again need a loss
function

We could choose absolute loss — see Homework 3, Q3.

The resulting problem is called “least absolute
deviations regression.”

The more common choice, though, is squared loss:

This problem is called least squares regression.



Minimizing empirical risk

After choosing a prediction rule and loss function, and writing
out the corresponding empirical risk, we need to minimize the
empirical risk to find the best predictions/parameters.

Some ways we've minimized empirical risk:

Calculus.

Other algebraic arguments.

Gradient descent.



Minimizing empirical risk with calculus

Strategy: take derivative(s), set it to 0, and solve. 2

L(“:j) = M

Constant hypothesis, squared loss:

1< .o oo
qu(h)=HZ(yi-h)2 — h*=% dh =

i=1
= j‘

Simple linear prediction rule, squared loss: Hix)

y
)
xR

Ryq(Wo,wy) = % Z (yi - (wy + W1Xi))2

Z'.q_ x. - x)v. -v g
* _ I—1( i )(y’ y) =r_y Wa:y—W_IX

1 - -
2?21 (X,’ - X)z O-X

Several homework problems.
HW 2 Q3, HW 3 Q1f.



Minimizing empirical risk with algebraic
arguments \\/

Since absolute loss is not differentiable, the resulting
empirical risk (mean absolute error) also isn't. We

couldn’t use calculus. ! \ /

For the constant hypothesis, R, .(h) = % .y, -hl.

We instead minimized R, by finding a formula for the
slope of R at any h (that isn't one of the y.):

S|=

slope of Rat h = = (#(y; < h) - #(y; > h))

XXX K—X

The median is where the slope of R goes from - to +; it
minimizes R, (h).



Minimizing empirical risk using gradient descent

Sometimes, even when our empirical risk is differentiable,
there is no closed-form solution for the minimizing input.

Example: Empirical risk for L, .

Solution: gradient descent.

Gradient descent tries to minimize a function R(h)
through an iterative process.
Key idea: Move opposite the direction of the slope.

Given an initial guess, h,, for the minimizer and a
step-size/learning rate a, gradient descent updates
are made with the update equation

d
hi=hiq-a-—Rh;,)

et o )



Gradient descent

Key theorem: Gradient descent is guaranteed to find the
global minimum of a function if that function is convex
and differentiable, given an appropriate step size.

A function f is convex if it is true that given any two
inputs a, b, the line segment joining (a, f(a)) and (b, f(b))
does not go below the graph of f.

Convex functions are “bowl” shaped.

Second derivative test.

(o, 1) 6wy






Other concepts — spread

Different loss functions lead to empirical risk functions
that, for the constant prediction rule, are minimized at

various measures Of center.
\/ )

Absolute loss: median.

Squared loss: mean.
0-1 loss: mode.
nin “L«"M o»f ((L\)
The minimum value of these empirical risks (i.e. the
lowest height on the graph of R) is a measure of the
spread of the data.  pgan
Absolute loss: pp#fifasabsolute deviation from the
median.
Squared loss: variance.
0-1 loss: proportion of values not equal to the mode.
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Other concepts — correlation

The correlation coefficient, r, is a measure of the linear
association between two variables.

It ranges between -1 and 1.

r = 1 indicates a perfect positive linear association (x
and y lie exactly on a straight line that is sloped
upwards).

r = -1 indicates a perfect negative linear association
between x and y.

The closer r is to 0, the weaker the linear association
between x and y is.

W; can be written in terms of r:



K x
x x b
xxx . X
« X 2 kX
X & = X
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Problem 2. (10 points)

Suppose you have a data set yi1,...,y» with one outlier whose value is significantly higher than the others.
If we use empirical risk minimization to make a prediction, which choice of loss function would lead to a
larger prediction, L(h,y) = (h —y)*, or L(h,y) = (h — y)? Explain.

(taken from Spring 2020 Final Part 1) L\ ‘\ .
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Problem 3. (10 points)

If we use empirical risk minimization to make predictions, which of the following loss functions would tend
to generate the best pueeetIons’ Lxplain your crompes

0<[h—yl<2
2<|h—y| <4

3, 0<|h—yl<2
b(hy) =42, 2<|h—y|l <4
1, 4<|h—y|

2, 0<|h—
Lp(h,y) =

(taker=fem-Spring 2020 Final Part 1)
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1. Given a data set of sizen =8 with y; <yo <ys—1<ys<ys+1<ys <ys <y < yr < ys how does

Rabs(ys — 1) compare to Raps(ys + 1)?7 Can you determine which is bigger, and by how much?

(taken from Spring 2021 Final Part 1)



Problem 5.
Look at the three different data distributions shown below. Each has the same x-axis, where the markings are evenly spaced,

splitting the data into thirteen bins of equal size. The frequency count for each bin is shown by the height of each bar.

Distribution A: Distribution B: Distribution C:

118 | 118 | | 118
‘ 11 | 11 1]

a) Which of these three distributions has the smallest mean absolute deviation from the median? Justify your
answer.

b) For the other two distributions, can you determine which has a larger mean absolute deviation from the median?
Justify your answer.

(taken from Fall 2020 Final Part 1)



Problem 2.
Consider the following data set in which each point z; has an associated weight w;:

i xT; Wi
11 2
2 2 2
-
3 4 4
4 10 1

Define R(h) as follows:
4
L 2

That is, R is the mean weighted square loss.
Run one iteration of gradient descent on R using the data above, a learni ng rate of aw = 1/8,

an initial prediction of A = 0. Show your work.
h - of ._. R(h.

(taken from Winter 2020 Final
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Problem 5. (12 points)

For each of the following statements, decide whether it is true or false, and justify your answer.

a) [6 points] In gradient descent, a larger learning rate sometimes allows you to find the minimum at a
faster pace.

b) [6 points] If you start at two different initial predictions, gradient descent will find the minimum in
either case, but it may take a different amount of time.

(Taken from Spring 2020 Final Part 1)
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4. The picture below shows a data set and two lines. One of the lines is the least squares regression line

and the other is the least absolute deviation regression line. Identify which line is which and explain your
answer.

10 { — Line 1 .
~— Line 2

(taken from Spring 2021 Final Part 1)



Problem 6. (10 points)

In general, if we fit a regression line to a set of data points, some of which are duplicates, do we get the same
or different regression line when we fit a regression line to the set of unique data points, with duplicates
discarded? Justify your answer.

(taken from Spring 2020 Final Part 1)
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