
DSC 40A - Homework 1
Due: Friday, October 7, 2022 at 2:00 PM PT

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Homeworks are due to Gradescope by before the start of the lecture on the due date.

Homework will be evaluated not only on the correctness of your answers, but on your ability to present
your ideas clearly and logically. You should always explain and justify your conclusions, using sound
reasoning. Your goal should be to convince the reader of your assertions. If a question does not require
explanation, it will be explicitly stated.

Homeworks should be written up and turned in by each student individually. You may talk to other
students in the class about the problems and discuss solution strategies, but you should not share any
written communication and you should not check answers with classmates. You can tell someone how to do
a homework problem, but you cannot show them how to do it.

For each problem you submit, you should cite your sources by including a list of names of other students
with whom you discussed the problem. Instructors do not need to be cited.

This homework will be graded out of 60 points. The point value of each problem or sub-problem is indicated
by the number of avocados shown.

Problem 1. When life gives you lemons...

Suppose you’re operating a fruit stand near La Jolla Cove. Your stand only accepts cash, so you don’t have
access to digital receipts of all of your transactions.

a) You want to keep track of the mean transaction price so far during the day. Instead of
writing down the price of each transaction and re-calculating the mean every time someone makes a
purchase, you want to come up with a way to only keep track of the mean transaction price.

Let xi represent the price of the ith transaction (e.g. the 5th transaction of the day is x5). We define
µn to be the mean of the first n transactions; that is, µn = 1

n

∑n
i=1 xi.

Determine a formula for µn+1 that only uses the variables µn, n, and xn+1. (Hint: Start by writing
out the definition of µn+1.)

b) Why does the above result imply that you don’t need to store the values of all transactions
individually?

c) So far, you’ve sold 9 items and the mean transaction price (including the 9th item) is $15. How
much would your next transaction price have to be in order for your new mean transaction price to
be $20.5?

d) We’ve shown that it’s possible to update the mean after each transaction without keeping track
of all transaction prices individually. Is it possible to do the same with the mode? That is, suppose
Mn represents the mode transaction price of the first n transactions. Is it possible to determine Mn+1

using just Mn and n?

If so, give a formula for Mn+1 in terms of just Mn and n. If not, explain why not, and provide a
counterexample with two different sets of transaction prices with the same values for Mn and n but
different values for Mn+1.

Problem 2. Garage Sale: Everything 2d Dollars!
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Suppose you’re selling n items at a garage sale. Let x1, x2, . . . , xn represent the dollar values of the items
you’re selling. These actual dollar values are known to you. To simplify the management of your garage
sale, you want to sell everything for the same fixed price of d dollars. The question is, what should this fixed
price be?

Let’s assume that for each item, if the asking price of the item is more than its value, then the item will not
sell, and otherwise, it will sell for two times the asking price. Example, if you mark an an item to be $x,
it will sell for $2x (People just tend to overpay for everything these days!)

First, we’re just going to consider the simplest case where you have a single item at your garage sale, whose
value is fixed at x1 dollars, where x1 > 0.

a) Define a piece wise function P (d), or P (d;x1), that represents the amount of money you’ll make if
you price the item at d dollars. No justification needed.

b) Draw a graph of P (d) as a function of d. Mark x1 on the horizontal and vertical axes. No
justification needed.

c) If your goal is to maximize your income at this one-item garage sale, how should you set the asking
price d? Explain how the answer based on the graph above matches up with the intuitive answer to
this question.

Consider another approach, where instead of creating a function to represent the money you’d make if you
priced the item at d dollars, you create a function to represent the amount of potential income you’d lose if
you price the item at d dollars. For example, if an item has a value of $5, you’d lose $2 of potential income
by pricing it at $4.

d) Define a piecewise function L(d), or L(d;x1), that represents the potential income lost if you price
the item at d dollars. No justification needed.

e) Draw a graph of L(d) as a function of d. Mark x1 on the horizontal and vertical axes. No
justification needed.

You should find that the price d that minimizes this loss function is the same price d that maximizes the
money earned. This can be explained mathematically, because there is a simple relationship between L(d)
and P (d).

f) Find this relationship. Express L(d) in terms of P (d).

Informally, a minimizer of a function f is an input x∗ where f achieves its minimum value. More formally, x∗

is a minimizer of f if f(x∗) ≤ f(x) for all values of x. In the same way, x∗ is a maximizer of f if f(x∗) ≥ f(x)
for all values of x.

g) Use the definitions of minimizer and maximizer given above to show that a minimizer of L(d)
is a maximizer of P (d) and that a maximizer of P (d) is a minimizer of L(d) (make sure your solution
addresses both parts). This shows that minimizing L(d) is equivalent to maximizing P (d).

Hint: In both directions of this proof, you should refer to your answer from part f).

Now suppose you’re selling two items, whose values are x1 and x2, with 0 < x1 ≤ x2. We want to find the
optimal asking prices, which is the value of d that maximizes the total money earned P (d;x1) +P (d;x2), or
equivalently, minimizes the total loss L(d;x1) + L(d;x2).

h) Argue why the optimal asking price can never be less than x1 or more than x2.

i) If we want to set our asking price to be a value grater than x1, what value should we set are
asking price to, so as to make it optimal? Give a reason for your answer.

j) Give an example of values x1 ̸= x2 where the optimal asking price is d = x1.
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k) Similarly, give an example of values x1 ̸= x2 where the optimal asking price is d = x2.

l) What condition needs to be satisfied for the optimal asking price to be d = x2? In other words,
can you characterize all possible solutions to the previous question?

Problem 3. Skylar’s Idea

In lecture, we discussed the fact that absolute error penalizes overestimates the same amount it penalizes
underestimates. (For instance, for a true salary of $100,000, predictions of $90,000 and $110,000 both have
absolute errors of $10,000.)

Your friend Skylar devises a new type of error, scaled absolute error, which generalizes absolute error so that
overestimates and underestimates can be penalized differently. Specifically, for any two scalar constants a
and b, the scaled absolute error for a single data point y and prediction h defined as

Lsca(h, y) =

{
a(h− y) y ≤ h

b(y − h) y > h

As usual, we will seek to minimize mean scaled absolute error, i.e.

Rsca(h) =
1

n

n∑
i=1

Lsca(h, yi)

First, let’s suppose we have a dataset with 9 points, {2, 3, 7, 11, 15, 18, 19, 22, 29}.

a) Find h∗ for the provided dataset when a = b = 1.

b) Find h∗ for the provided dataset when a = 1 and b = 3. Explain how you arrived at your
answer.

c) Find h∗ for the provided dataset when a = 3 and b = 1.

Hint: Most of the work in this question should be in determining how to answer part b). Once
you’ve answered that, you should be able to answer part c) much more easily.

Problem 4. Prata’s Idea

In lecture, we argued that a good prediction h is one that has a small mean absolute error:

R(h) =
1

n

n∑
i=1

|yi − h|

We saw that the median of y1, . . . , yn is the prediction with the smallest mean absolute error. Your friend
Prata thinks that instead of minimizing the mean absolute error, it is better to minimize the product of the
absolute errors:

P (h) =

n∏
i=1

|yi − h|

The above formula is written using product notation, which is similar to summation notation, except terms
are multiplied and not added. For example,

n∏
i=1

ai = a1 · a2 · a3 · . . . · an
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In this problem, we’ll see if Prata has a good idea.

a) Without using a calculator or computer, graph P (h) for the data set y1 = 4, y2 = −1.

b) Let’s say we have three points in our data set, y1 = 1, y2 = 5, y3 = 8. Now, lets say you built
a model that makes a prediction h = 6. What would be the value of the error using Prata’s error
function (P (h))?

c) For an arbitrary data set y1, y2, . . . , yn, what value(s) h
∗ minimize P (h)? Discuss the pros

and cons of using Prata’s prediction strategy. What factors about the data set or application will
influence whether this prediction strategy gives good predictions?

Problem 5. More Data for Better Predictions

Note: For this problem, you will need to write code. You are free to do this locally on your computer,
but you can also use https://datahub.ucsd.edu; there is a DSC 40A image there that you can use if you
wish. You will not need to turn in any separate code files; we will specify what you need to include in your
PDF submission in each subpart.

Companies seem to be hoarding as much data as they can get these days. One reason for this data hoarding
is that more data enables better prediction-making. In this problem, we’ll try to quantify how much better
predictions can become with more data.

Let’s start with a simple experiment. Imagine that our data contains randomness (as will all phenomena
on earth) and are generated identically and independently from a uniform distribution within an interval on
the real line: that is, for each data point, there is equal chance of it taking any value within a fixed interval.

Suppose that the width of that interval is 10, but we do not know the center of the interval. Based on the
data we observe, we want to estimate, or predict, the center of the interval, which we call θ, and we want to
see whether more data will help us in determining θ.

We can generate synthetic data to perform this experiment. We’ll start by fixing a value θ, which will
determine the interval from which we generate our data. In Python, let’s first import the numpy package
and generate a true θ parameter by picking a number randomly from 10 to 50:

import numpy as np

theta = np.random.uniform(10.0, 50.0)

Note in the above code that the function np.random.uniform() takes in two arguments, the lower and
upper limits of an interval, and outputs a random number in that interval, chosen from a uniform distribution.

Now we have fixed the true model that generates data. The value of θ, or the center of the interval from
which we will generate data, is determined, though we don’t know what is. We’ve decided that our interval
will have a width of 10, which means the data will be uniformly distributed across the interval [θ− 5, θ+5].

Next, we can generate synthetic data from our model using the random.uniform() function. For example,
if we wish to generate 10 data points, we can set number of data n = 10 and write:

n = 10

x = np.random.uniform(theta - 5.0, theta + 5.0, n)

Here the additional third argument to the function np.random.uniform() specifies how many random
numbers we want to generate. The default setting (as in our previous lines of code) is 1.

If we would like to take a look at the generated data, we can print it:

print(x)

You will see that our data x are stored as an array and are randomly distributed in a certain range. With
the data generated, we can now start to infer what the value of θ is.
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a) Run the code given above. By hand, draw a number line and mark each data point in array x.
Use your drawing to make a guess about the value of θ based on the data in x. Include your drawing
and guess in your submission.

If we make a guess, h, how good of a guess have we made? Since we have access to the true value of θ, we
can use loss functions to tell us how close our predictions are from the truth. For example, a small absolute
error |h− θ| or a small squared error (h− θ)2 can mean that our guess h is close to the truth θ.

For now, we’ll make a guess h and use the absolute error,

abs_err = abs(h-theta)

to assess how good of a guess we’ve made. Smaller values of abs err correspond to better guesses.

We can also make systematic predictions for θ, instead of looking at the data and guessing. Suppose we
use the mean of the data as our prediction. We can calculate the mean of the data using numpy’s built-in
function:

h = np.mean(x)

We can then calculate the absolute error corresponding to this prediction:

abs_err_mean = abs(h-theta)

b) Calculate the absolute loss abs err corresponding to your guess in part (a). Then, calculate the
absolute loss abs err mean corresponding to the mean. Did you make a better guess by looking at
the data, or was the mean a better guess for θ? Include the values of your guess, abs err , the mean
of the x values, abs err mean, and the true value of theta in your submission.

c) Now try this computation for n = 10, 20, 30, . . . , 150 using a for loop, using the mean as
your guess each time. Observe how the squared error in the mean estimate changes as a function of
the number of data values. Is it correct that more data leads to better estimates of the truth?

For this question, turn in a plot of abs err mean with n on the horizontal axis and abs err mean on
the vertical axis. Use matplotlib.pyplot to plot the results. For example, if abs err mean were to
take values of [1, 2, 4, 8, 16, 32, 64, 128] when n takes values of [1, 2, 3, 4, 5, 6, 7, 8], then we could make
the plot using the following code:

import matplotlib.pyplot as plt

plt.plot([1,2,3,4,5,6,7,8], [1,2,4,8,16,32,64,128])

plt.show()

Hint: Our solution to this problem involves defining a function that takes in no arguments and returns
an array of length 15 containing abs err mean for each value of n. If you write your code this way, it
will make the next two parts of this problem much easier.

d) How does error scale with the number of data points?

To answer this question, make a similar plot as before, except for each value of n, repeat the experiment
1000 times and calculate the average abs err mean’s you obtain for each experiment. This reduces
the noise and allows you to see the overall trend. Since error decreases as n increases, it may also be
helpful to plot 1.0/err.

For this question, turn in a plot of abs err mean averaged over 1000 runs and a plot of 1.0/abs err mean
averaged over 1000 runs. Then use your plots to explain how the error appears to scale as the number
of data points grows. If we were to double the number of data points, say, how much would we expect
the error to change?

Hint: If you followed our suggestion in the previous subpart, this subpart should not take you very
long. You should call the function you wrote in the previous subpart 1000 times and average the
results.
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e) Next, repeat the entire experiment, except use the mode of the data as your guess and use the
absolute loss to asses the quality of your guess.

For this question, we would recommend using the random.randint function provided by numpy to
get more overlapping values.

n = 10

x = np.random.randint(theta - 5.0, theta + 5.0, n)

For this question, turn in a plot of absolute error abs err mode averaged over 1000 runs and a plot
of 1.0/abs err mode averaged over 1000 runs. Then use your plots to explain how the absolute error
appears to scale as the number of data points grows. If we were to double the number of data points,
say, how much would we expect the error to decrease?

Hint: look carefully at the axes of your plots.

f) From the plots of the respective curves using mean of data (abs err mean) and mode of data
(abs err mode) you obtained from the previous sections, which one according to you is the most useful
strategy in practice and why?

You do not need to turn in any code for this problem, just a few specified numbers, your plots, and expla-
nations.
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