
DSC 40A - Homework 4
Due: Friday, November 4, 2022 at 11:59pm PDT

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Homeworks are due to Gradescope by 11:59pm PT on the due date. You can use a slip day
to extend the deadline by 24 hours. Make sure to correctly assign pages to Gradescope when submitting.

Homework will be evaluated not only on the correctness of your answers, but on your ability to present
your ideas clearly and logically. You should always explain and justify your conclusions, using sound
reasoning. Your goal should be to convince the reader of your assertions. If a question does not require
explanation, it will be explicitly stated.

Homeworks should be written up and turned in by each student individually. You may talk to other
students in the class about the problems and discuss solution strategies, but you should not share any
written communication and you should not check answers with classmates. You can tell someone how to do
a homework problem, but you cannot show them how to do it.

For each problem you submit, you should cite your sources by including a list of names of other students
with whom you discussed the problem. Instructors do not need to be cited.

This homework will be graded out of 48 points. The point value of each problem or sub-problem is indicated
by the number of avocados shown.

Note: Problems 2, 3, and 4 refer to a supplemental Jupyter Notebook, which can be found at this link.

Problem 1. Vector Calculus Involving Matrices

Let X be a fixed matrix of dimension m × n, and let w⃗ ∈ Rn. In this problem, you will show that the
gradient of w⃗TXTXw⃗ with respect to w⃗ is given by

d

dw⃗
(w⃗TXTXw⃗) = 2XTXw⃗

as we used in Lecture 8.

Let r⃗1, r⃗2, . . . , r⃗m be the column vectors in Rn that come from transposing the rows of X. For example,

if X =

[
1 4 7
2 3 1

]
, then r⃗1 =

14
7

 and r⃗2 =

23
1

.
a) Show that, for arbitrary X and w⃗, we can write

w⃗TXTXw⃗ =

m∑
i=1

(r⃗Ti w⃗)
2.

Hint: First, show that we can write w⃗TXTXw⃗ as a dot product of two vectors. Then, try and re-write
those vectors in terms of r⃗1, r⃗2, ..., r⃗m and w⃗.

Now that we have written

w⃗TXTXw⃗ =

m∑
i=1

(r⃗Ti w⃗)
2
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we can apply the chain rule, along with the result of part (a) above, to conclude that

d

dw⃗
(w⃗TXTXw⃗) =

m∑
i=1

2(r⃗Ti w⃗)
d

dw⃗
(r⃗Ti w⃗)

=

m∑
i=1

2(r⃗Ti w⃗)r⃗i

b) Next, show that, for arbitrary X and w⃗, we can write

2XTXw⃗ =

m∑
i=1

2(r⃗Ti w⃗)r⃗i

Hint 1: Suppose A is a matrix and v⃗ is a vector, and that the product Av⃗ is well-defined. How can
we write the product Av⃗ as a sum involving the columns of A and elements of v⃗?

Hint 2: It is likely that you’ll need to use one of your intermediate results from part (a).

Since you’ve shown that d
dw⃗ (w⃗TXTXw⃗) and 2XTXw⃗ are both equal to the same expression,

∑m
i=1 2(r⃗

T
i w⃗)r⃗i,

you have proven that they are equal to one another, i.e. that

d

dw⃗
(w⃗TXTXw⃗) = 2XTXw⃗

as desired.

Problem 2. Billy’s Back!

This problem is formatted slightly differently. It is entirely contained in the supplemental Jupyter Notebook,
which can be found at this link. However, you will not submit your code — instead, each subpart tells you
what to include in your PDF writeup.

Note that the problem is worth 18 points total, split across 6 parts.

Problem 3. Sums of Residuals

Let’s start by recalling the idea of orthogonality from linear algebra. This will allow us to prove a powerful
result regarding linear regression, starting in part (b).

Two vectors are orthogonal if their dot product is 0, i.e. for a⃗, b⃗ ∈ Rn:

a⃗T b⃗ = 0 =⇒ a⃗, b⃗ are orthogonal

Orthogonality is a generalization of perpendicularity to multiple dimensions. (Two orthogonal vectors in 2D
meet at a right angle.)

Suppose we want to represent the fact that some vector b⃗ is orthogonal to many vectors a⃗1, a⃗2, ..., a⃗d all at
once. It turns out that we can do this by creating a new n× d matrix A whose columns are the vectors a⃗1,
a⃗2, ..., a⃗d, and writing AT b⃗ = 0.

For instance, suppose a⃗1 =

 8
4
−2

, a⃗2 =

35
1

, and b⃗ =

 1
−1
2

. Then,
A =

 8 3
4 5
−2 1

 =⇒ AT =

[
8 4 −2
3 5 1

]
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Note that the product AT b⃗ involves taking the dot product of each row in AT with b⃗. If AT b⃗ is a vector of
all 0s, i.e. the 0 vector, then it is the case that b⃗ is orthogonal to each row of AT , and hence orthogonal to
each column of A.

(We will not use this fact in this class, but if AT b⃗ = 0, it also means that b⃗ is orthogonal to the column
space of A.)

a) In the example above, verify that b⃗ is orthogonal to the columns of A.

b) Suppose 1⃗ is a vector in Rn containing the value 1 for each element, i.e. 1⃗ =


1
1
...
1

.

For any other vector b⃗ =


b1
b2
...
bn

, what is the value of 1⃗T b⃗, i.e. what is the dot product of 1⃗ and b⃗?

Your answer may involve a summation symbol. Explain what it means in words.

Hint: This subpart should not take much time, so let us know if you’re stuck on it. Try making up
an example b⃗ and see what 1⃗T b⃗ evaluates to, before generalizing your result to arbitrary b⃗.

c) Now, consider the multiple regression scenario where X is a n × (d + 1) design matrix, y⃗ ∈ Rn

is an observation vector, and w∗ ∈ R(d+1) is the optimal parameter vector.

Show that the error vector, y⃗ −Xw⃗∗, is orthogonal to the columns of X.

Hint: Again, this should not take very long. Start with the normal equations, XTXw⃗∗ = XT y⃗, use
the distributive property of matrix multiplication, and use what you learned in part (a).

d) We define the ith residual to be the difference between the actual and predicted values for
individual i in our data set. In other words, the ith residual ei is

ei = yi −H∗(x⃗i) = (y⃗ −Xw⃗∗)i

(Note that (y⃗ −Xw⃗∗)i is referring to element i of the vector y⃗ −Xw⃗∗. Also, we use the letter e for
residuals because residuals are also known as errors.)

Using what you learned in parts (a), (b), and (c), show that the residuals of a multiple linear
regression prediction rule with an intercept term sums to 0 , i.e. that

∑n
i=1 ei = 0.

Note: If you want to see an example of this fact, look at the “Supplement for Problem 3” portion of
the supplemental Jupyter Notebook, which can be found at this link.

e) Now suppose our multiple linear regression prediction rule does not have an intercept term,

i.e. that our prediction rule is of the form H(x⃗) = w1x
(1) + w2x

(2) + ...+ wdx
(d).

1. Is it still guaranteed that
∑n

i=1 ei = 0? Why or why not?

2. Is it still possible that
∑n

i=1 ei = 0? If you believe the answer is yes, come up with a simple
example where a prediction rule without an intercept has residuals that sum to 0. If you believe
the answer is no, state why.
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Problem 4. Least Absolute Deviation Regression for Multiple Variables

In Lectures 8, 9, and 10, we explored least squares regression and derived the general solution for least
squares regression with multiple parameters, also known as the normal equations:

XTXw⃗∗ = XT y⃗,

where X is the design matrix, y⃗ is the observation vector, and w⃗ is the parameter vector.

In this problem, we are going to try and expand our concept of least absolute deviation (LAD) regression
from Homework 3 to accommodate linear prediction rules with two features.

This time, instead of data in R2, you will be given data in R3. Now that we have added an extra dimension
to our data, we are no longer solving for a regression line, but rather a regression plane of the form H(x⃗) =
w0+w1x

(1)+w2x
(2). In order to use notation that is more convenient and more similar to what you’ve seen

in earlier coursework, let’s suppose we’re trying to find a regression plane of the form

z = H(x, y) = ax+ by + c

When performing LAD regression, our loss function is absolute loss. That means that we’re trying to find
the a, b, and c that together minimize mean absolute error,

Rabs(a, b, c) =
1

n

n∑
i=1

|zi − (axi + byi + c)|

(Here, zi represents the ith output value.)

We will adopt a strategy similar to Homework 3 to solve for the LAD regression plane. Recall the theorem
from last week: If you have a data set with n data points in Rk, where k ≤ n, then one of the optimal LAD
regression prediction rules must pass through k data points.

Since our data will be in R3, we will generate all possible unique triplets of points and calculate the coefficients
a, b, and c that define a plane of the form z = ax+ by + c that goes through the three points in our triplet.
Then we’ll just select which a, b, c triplet among these finite options has the smallest value of Rabs(a, b, c).
This is guaranteed by the theorem to be an optimal LAD regression plane.

a) Before implementing the above strategy in code, let’s get familiar with the process by doing

an example by hand. Let’s say we have three points, A =

14
5

, B =

 2
3
−1

, and C =

 4
−2
0

.
Given these three points in R3, compute the equation of the plane going through them, giving your
answer in the form z = ax+ by + c.

Note: You may need to review some concepts from multivariable calculus (i.e. Math 20C) to do this
problem. Here is a nice summary and some examples, obtained from MIT OpenCourseWare under a
Creative Commons License.

Hint: After reading the linked notes, a good first step may be to compute A⃗B, the difference between
points A and B, and A⃗C, the difference between the points A and C, and take their cross product.

b) Now, we’ll find the LAD regression plane, again for Billy’s tip dataset that you worked on
in Problem 2.

Recall from the problem description the procedure outlined to generate an optimal LAD regression
plane. In the supplemental Jupyter Notebook, found at this link, we’ve already defined several
functions for you:
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• generate all combinations, which takes in a dataset and a combination size (in our case, 3)
and returns all subsets of the dataset of that size.

• plane mae, which takes in values of a, b, c and a dataset and returns the mean absolute error of
the plane z = ax+ by + c on that dataset.

• find best plane, which takes in a list of planes (i.e. a list of (a, b, c) triplets) and a dataset and
finds the plane with the lowest mean absolute error. (You implemented this yourself in Homework
2.)

Your job is to complete the implementation of a function, generate all planes, that generates
all planes given a list of the triplets of points and return a list of these planes; the list of planes
should be a list of (a, b, c) triplets. Turn in a screenshot of your function as well as the (a, b, c) triplet
corresponding to the LAD regression plane for the given data.
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