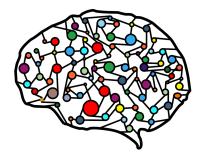
Lecture 2 – Minimizing Mean Absolute Error



DSC 40A, Fall 2022 @ UC San Diego Mahdi Soleymani, with help from many others

Announcements

- Look at the readings linked on the course website!
- ► Homework 1 will be out Friday September 30th and is due on Friday, 10/7 at 2:00pm.
- Groupwork 1 will be out on Thursday September 29th and is due on 11:59pm Monday, October 3rd.
- Come to discussion next Monday to work on groupwork.
- See Calendar on course website for office hours. Location: SDSC.
- Access to Campuswire, Gradescope (3JDXW7), and, Podcasts.

Agenda

- 1. Recap from Lecture 1 learning from data.
- 2. Minimizing mean absolute error.

optimization

Recap from Lecture 1 – learning from data and

Mean absolute error (MAE)

Mean absolute error on data:

$$h_1: 42,000 \qquad h_2: 23,000$$

- \triangleright Conclusion: h_2 is the better prediction.
- In general: pick prediction with the smaller mean absolute error.

We are making an assumption...

- We're assuming that future salaries will look like present salaries.
- That a prediction that was good in the past will be good in the future.

Discussion Question

Is this a good assumption?

Which is better: the mean or median?

► Recall:

We can calculate the mean absolute error of each:

mean: 22,400 median: 19,200

- The median is the best prediction so far!
- But is there an even better prediction?

Finding the best prediction

- Any (non-negative) number is a valid prediction.
- ► Goal: out of all predictions, find the prediction *h** with the smallest mean absolute error.
- ► This is an **optimization problem**.

We have data:

- Suppose our prediction is h.
- ► The mean absolute error of our prediction is:

$$R(h) = \frac{1}{5} \Big(|90,000 - h| + |94,000 - h| + |96,000 - h| + |120,000 - h| + |160,000 - h| \Big)$$

We have a function for computing the mean absolute error of any possible prediction.

$$R(150,000) = \frac{1}{5} (|90,000 - 150,000| + |94,000 - 150,000| + |96,000 - 150,000| + |120,000 - 150,000| + |160,000 - 150,000|)$$

$$= 42,000$$

We have a function for computing the mean absolute error of any possible prediction.

$$R(115,000) = \frac{1}{5} (|90,000 - 115,000| + |94,000 - 115,000| + |96,000 - 115,000| + |120,000 - 115,000| + |160,000 - 115,000|)$$

$$= 23,000$$

We have a function for computing the mean absolute error of **any** possible prediction.

$$R(\pi) = \frac{1}{5} (|90,000 - \pi| + |94,000 - \pi| + |96,000 - \pi| + |120,000 - \pi| + |160,000 - \pi|)$$

$$= 111,996.8584...$$

Discussion Question

Without doing any calculations, which is correct?

A. R(50) < R(100)

B. R(50) = R(100)C. R(50) > R(100)

- ► Suppose we collect n salaries, $y_1, y_2, ..., y_n$.
- The mean absolute error of the prediction *h* is:

Or, using summation notation:

We have data:

- Suppose our prediction is h.
- ► The mean absolute error of our prediction is:

$$R(h) = \frac{1}{5} \Big(|90,000 - h| + |94,000 - h| + |96,000 - h| + |120,000 - h| + |160,000 - h| \Big)$$

Many possible predictions

Last time, we considered four possible hypotheses for future salary, and computed the mean absolute error of each.

$$h_1 = 150,000 \implies R(150,000) = 42,000$$

$$h_2 = 115,000 \implies R(115,000) = 23,000$$

$$h_3 = \text{mean} = 112,000 \implies R(112,000) = 22,400$$

$$h_4 = \text{median} = 96,000 \implies R(96,000) = 19,200$$

Of these four options, the median has the lowest MAE. But is it the **best possible prediction overall**?

The best prediction

- ▶ We want the best prediction, h^* .
- ▶ The smaller R(h), the better h.
- ▶ Goal: find h that minimizes R(h).

Discussion Question

Can we use calculus to minimize R?

Minimizing mean absolute error

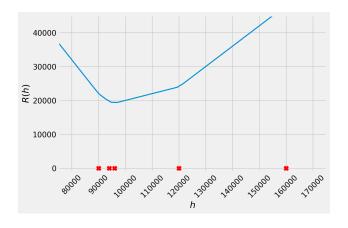
Minimizing with calculus

Calculus: take derivative with respect to *h*, set equal to zero, solve.

Uh oh...

- ► R is not differentiable.
- ► We can't use calculus to minimize it.
- Let's try plotting *R*(*h*) instead.

Plotting the mean absolute error

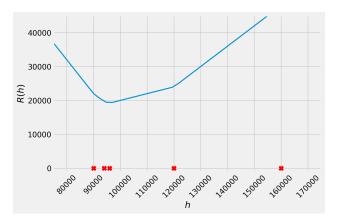


Discussion Question

A local minimum occurs when the slope goes from ______. Select all that apply.

- A) positive to negative
- B) negative to positive
- C) positive to zero.
- D) negative to zero.

Goal



- Find where slope of *R* goes from negative to non-negative.
- Want a formula for the slope of *R* at *h*.

Sums of linear functions

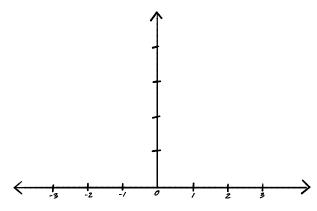
▶ Let

$$f_1(x) = 3x + 7$$
 $f_2(x) = 5x - 4$ $f_3(x) = -2x - 8$

▶ What is the slope of $f(x) = f_1(x) + f_2(x) + f_3(x)$?

Absolute value functions

Recall, f(x) = |x - a| is an absolute value function centered at x = a.

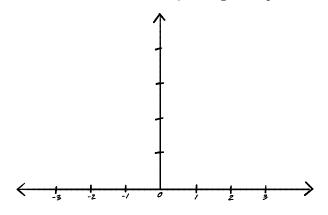


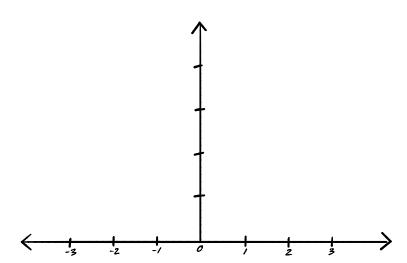
Sums of absolute values

Let

$$f_1(x) = |x-2|$$
 $f_2(x) = |x+1|$ $f_3(x) = |x-3|$

▶ What is the slope of $f(x) = f_1(x) + f_2(x) + f_3(x)$?





The slope of the mean absolute error

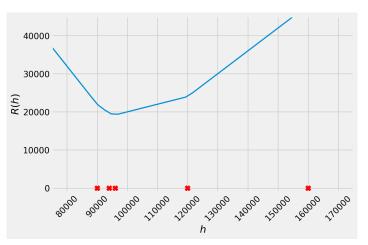
R(h) is a sum of absolute value functions (times $\frac{1}{n}$):

$$R(h) = \frac{1}{n} \left(|h - y_1| + |h - y_2| + \dots + |h - y_n| \right)$$

The slope of the mean absolute error

The slope of *R* at *h* is:

$$\frac{1}{n} \cdot [(\# \text{ of } y_i' \text{s} < h) - (\# \text{ of } y_i' \text{s} > h)]$$



Where the slope's sign changes

The slope of R at h is:

$$\frac{1}{n} \cdot [(\# \text{ of } y_i' \text{s} < h) - (\# \text{ of } y_i' \text{s} > h)]$$

Discussion Question

Suppose that *n* is odd. At what value of *h* does the slope of R go from negative to non-negative?

- A) $h = \text{mean of } y_1, ..., y_n$ B) $h = \text{median of } y_1, ..., y_n$ C) $h = \text{mode of } y_1, ..., y_n$

The median minimizes mean absolute error, when *n* is odd

- Our problem was: find h^* which minimizes the mean absolute error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$.
- We just determined that when n is odd, the answer is Median(y₁,...,y_n). This is because the median has an equal number of points to the left of it and to the right of it.
- ▶ But wait what if *n* is **even**?

Discussion Question

Consider again our example dataset of 5 salaries.

90,000 94,000 96,000 120,000 160,000

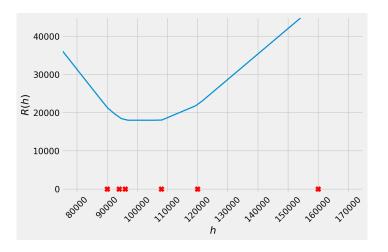
Suppose we collect a 6th salary, so that our data is now

90,000 94,000 96,000 108,000 120,000 160,000

Which of the following correctly describes the h^* that minimizes mean absolute error for our new dataset?

- A) 96,000 only
- B) 108,000 only
- C) 102,000 only
- D) Any value between 96,000 and 108,000, inclusive

Plotting the mean absolute error, with an even number of data points



What do you notice?

The median minimizes mean absolute error

- Our problem was: find h^* which minimizes the mean absolute error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$.
- Regardless of if n is odd or even, the answer is $h^* = \text{Median}(y_1, ..., y_n)$. The **best prediction**, in terms of mean absolute error, is the **median**.
 - ▶ When *n* is odd, this answer is unique.
 - When *n* is even, any number between the middle two data points also minimizes mean absolute error.
 - We define the median of an even number of data points to be the mean of the middle two data points.

Identifying another type of error

Two things we don't like

- 1. Minimizing the mean absolute error wasn't so easy.
- 2. Actually **computing** the median isn't so easy, either.
 - Question: Is there another way to measure the quality of a prediction that avoids these problems?

The mean absolute error is not differentiable

- We can't compute $\frac{d}{dh}|y_i h|$.
- ► Remember: $|y_i h|$ measures how far h is from y_i .
- ► Is there something besides $|y_i h|$ which:
 - 1. Measures how far h is from y_i , and
 - 2. is differentiable?

The mean absolute error is not differentiable

- We can't compute $\frac{d}{dh}|y_i h|$.
- Remember: $|y_i h|$ measures how far h is from y_i .
- ▶ Is there something besides $|y_i h|$ which:
 - 1. Measures how far h is from y_i , and
 - 2. is differentiable?

Discussion Question

Which of these would work?

b) $|y_i - h|^2$

a) $e^{|y_i-h|}$ c) $|y_i - h|^3$

d) $cos(y_i - h)$