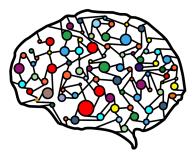
Lecture 2 – Minimizing Mean Absolute Error



DSC 40A, Fall 2022 @ UC San Diego

Dr. Truong Son Hy, with help from many others

Announcements

- Look at the readings linked on the course website!
- First Discussion: Monday, October 3rd 2022
 First Homework Release: Friday September 30th 2022
 First Groupwork Release: Thursday September 29th 2022
 Groupwork Relsease Day: Thursday afternoon
 Groupwork Submission Day: Monday midnight
 Homework Release Day: Friday after lecture
 Homework Submission Day: Friday before

- See Calendar on course website for office hours locations and Zoom links.
 - In-person office hours are now in SDSC. You will get the passcode from the TA and tutors to access the building.

Agenda

- 1. Recap from Lecture 1 learning from data.
- 2. Minimizing mean absolute error.
- 3. Identifying another choice of error.

Recap from Lecture 1 – learning from data

Last time

- Question: How do we turn the problem of learning from data into a math problem?
- Answer: Through optimization.
- Important assumption: We assume that the data we collected from the past/history is a good representation for the future prediction.

A formula for the mean absolute error

We have data:

90,000 94,000 96,000 120,000 160,000

- Suppose our prediction is *h*.
- ► The mean absolute error of our prediction is: $R(h) = \frac{1}{5} (|90,000 - h| + |94,000 - h| + |96,000 - h|) + |120,000 - h| + |160,000 - h|)$

Many possible predictions

Last time, we considered four possible hypotheses for future salary, and computed the mean absolute error of each.

$$h_1 = 150,000 \implies R(150,000) = 42,000$$

$$h_2 = 115,000 \implies R(115,000) = 23,000$$

▶
$$h_3$$
 = mean = 112,000 \implies $R(112,000) = 22,400$

$$h_{L} = \text{median} = 96,000 \implies R(96,000) = 19,200$$

Of these four options, the median has the lowest MAE. But is it the **best possible prediction overall**?

A general formula for the mean absolute error

- Suppose we collect *n* salaries, $y_1, y_2, ..., y_n$.
- ▶ The mean absolute error of the prediction *h* is:

$$R(h) = \frac{1}{n} \left(|y_1 - h| + |y_2 - h| + \dots + |y_n - h| \right)$$

Or, using summation notation:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

The best prediction

- We want the best prediction, h^* (i.e. $R(h^*) = \min_{h>0} R(h)$).
- ► The smaller *R*(*h*), the better *h*.
- ► Goal: find *h* that minimizes *R*(*h*).
- Optimization problem (with a constraint h > 0):

 $h^* = \operatorname{argmin}_{h>0} R(h)$

Discussion Question

Can we use calculus to minimize R?

Minimizing mean absolute error

Optimization problem:

 $\min_{h>0} R(h)$

Calculus: take derivative with respect to h, set equal to zero, solve.

$$\frac{d}{dh}R(h)=0$$

Given an **arbitrary** function *R*, under which conditions the equation

 $\frac{d}{dh}R(h)=0$

return to us the solution of the optimization problem

min R(h)?

Given an **arbitrary** function *R*, under which conditions the equation

 $\frac{d}{dh}R(h)=0$

return to us the solution of the optimization problem

min R(h)?

- We are able to compute the derivative or R is differentiable.
- ► There is a unique global minimum.
- The equation will return to us local minimal and local maximal.

Calculus: take derivative with respect to h, set equal to zero, solve.

Given

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

Calculus: take derivative with respect to h, set equal to zero, solve.

Given

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

$$\frac{d}{dh}R(h) = \frac{d}{dh}\left(\frac{1}{n}\sum_{i=1}^{n}|y_i - h|\right)$$

Calculus: take derivative with respect to h, set equal to zero, solve.

Given

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

$$\frac{d}{dh}R(h) = \frac{d}{dh}\left(\frac{1}{n}\sum_{i=1}^{n}|y_{i}-h|\right)$$
$$\Leftrightarrow \frac{d}{dh}R(h) = \frac{1}{n}\frac{d}{dh}\left(\sum_{i=1}^{n}|y_{i}-h|\right)$$

Calculus: take derivative with respect to h, set equal to zero, solve.

Given

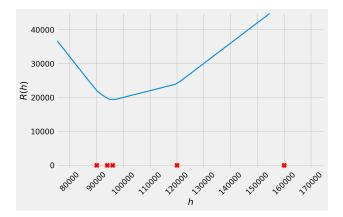
$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

$$\frac{d}{dh}R(h) = \frac{d}{dh}\left(\frac{1}{n}\sum_{i=1}^{n}|y_{i}-h|\right)$$
$$\Leftrightarrow \frac{d}{dh}R(h) = \frac{1}{n}\frac{d}{dh}\left(\sum_{i=1}^{n}|y_{i}-h|\right)$$
$$\Leftrightarrow \frac{d}{dh}R(h) = \frac{1}{n}\sum_{i=1}^{n}\frac{d}{dh}|y_{i}-h|$$

Uh oh...

- *R* is not differentiable.
- We can't use calculus to minimize it.
- Let's try plotting R(h) instead.

Plotting the mean absolute error



Useful online tool for drawing:

https://www.desmos.com/calculator

Discussion Question

A local minimum occurs when the slope goes from _____. Select all that apply.

- A) positive to negative
- B) negative to positive
- C) positive to zero.
- D) negative to zero.

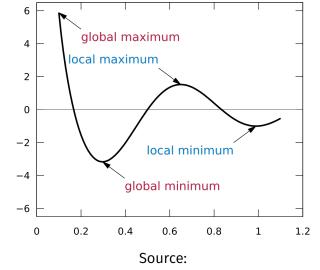
Discussion Question

A local minimum occurs when the slope goes from _____. Select all that apply.

- A) positive to negative
- B) negative to positive
- C) positive to zero.
- D) negative to zero.

Answer: B

What we know from Calculus



https://en.wikipedia.org/wiki/Maxima_and_minima

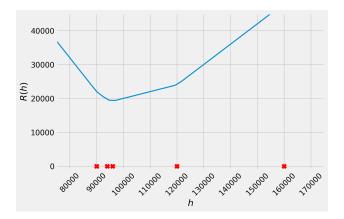
What we know from Calculus

The First Derivative Test: Let *c* be a critical point for a continuous function f

- If f'(x) changes from positive to negative at c, then f(c) is a local maximum.
- If f'(x) changes from negative to positive at c, then f(c) is a local minimum.
- If f'(x) does not change sign at c, then f(c) is neither a local maximum or minimum.

Note: Critical points are the solutions of equation f'(x) = 0.

Goal



- ▶ Find where slope of *R* goes from negative to non-negative.
- ▶ Want a formula for the slope of *R* at *h*.

Sums of linear functions

Let

$$f_1(x) = 3x + 7$$
 $f_2(x) = 5x - 4$ $f_3(x) = -2x - 8$

• What is the slope of $f(x) = f_1(x) + f_2(x) + f_3(x)$?

Sums of linear functions

Let

$$f_1(x) = 3x + 7$$
 $f_2(x) = 5x - 4$ $f_3(x) = -2x - 8$

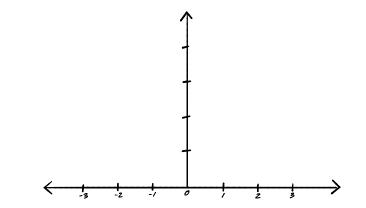
► What is the slope of $f(x) = f_1(x) + f_2(x) + f_3(x)$? We can do it analytically:

$$f(x) = (3x + 7) + (5x - 4) + (-2x - 8) = 6x - 5$$

So the slope is 6. Because in this case, we don't have the absolute value.

Absolute value functions

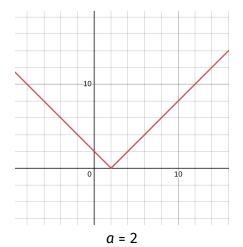
Recall, f(x) = |x - a| is an absolute value function centered at x = a.



First, start with f(x) = |x| and then shift the plot by a units to the right.

Absolute value functions

Recall, f(x) = |x - a| is an absolute value function centered at x = a.

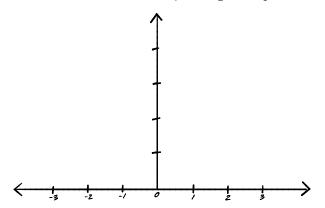


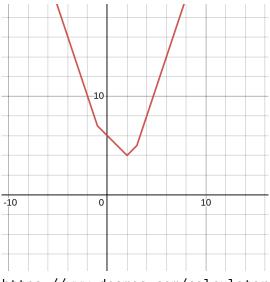
Sums of absolute values

Let

$$f_1(x) = |x-2|$$
 $f_2(x) = |x+1|$ $f_3(x) = |x-3|$

• What is the slope of $f(x) = f_1(x) + f_2(x) + f_3(x)$?





https://www.desmos.com/calculator

R(h) is a sum of absolute value functions (times $\frac{1}{n}$):

$$R(h) = \frac{1}{n} \left(|h - y_1| + |h - y_2| + \dots + |h - y_n| \right)$$

R(h) is a sum of absolute value functions (times $\frac{1}{n}$):

$$R(h) = \frac{1}{n} \left(|h - y_1| + |h - y_2| + \dots + |h - y_n| \right)$$

We have:

$$R(h) = \frac{1}{n} \left(\sum_{i: y_i < h} |h - y_i| + \sum_{i: y_i > h} |h - y_i| \right)$$

R(h) is a sum of absolute value functions (times $\frac{1}{n}$):

$$R(h) = \frac{1}{n} \left(|h - y_1| + |h - y_2| + \dots + |h - y_n| \right)$$

We have:

$$R(h) = \frac{1}{n} \left(\sum_{i:y_i < h} |h - y_i| + \sum_{i:y_i > h} |h - y_i| \right)$$

$$\Leftrightarrow R(h) = \frac{1}{n} \left(\sum_{i:y_i < h} (h - y_i) + \sum_{y_i > h} (y_i - h) \right)$$

R(h) is a sum of absolute value functions (times $\frac{1}{n}$):

$$R(h) = \frac{1}{n} \left(|h - y_1| + |h - y_2| + \dots + |h - y_n| \right)$$

We have:

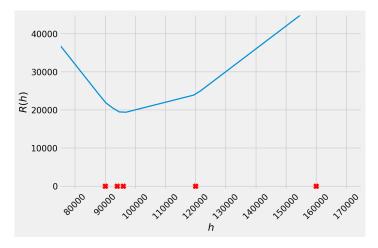
$$R(h) = \frac{1}{n} \left(\sum_{i:y_i < h} |h - y_i| + \sum_{i:y_i > h} |h - y_i| \right)$$

$$\Leftrightarrow R(h) = \frac{1}{n} \left(\sum_{i:y_i < h} (h - y_i) + \sum_{y_i > h} (y_i - h) \right)$$

$$\Leftrightarrow R(h) = \frac{1}{n} \left(\sum_{i:y_i < h} 1 - \sum_{i:y_i > h} 1 \right) h + \text{constant}$$

The slope of R at h is:

$$\frac{1}{n} \cdot [(\# \text{ of } y_i' \text{s} < h) - (\# \text{ of } y_i' \text{s} > h)]$$



Where the slope's sign changes

The slope of R at h is:

$$\frac{1}{n} \cdot [(\# \text{ of } y_i ' s < h) - (\# \text{ of } y_i ' s > h)]$$

Discussion Question

Suppose that n is odd. At what value of h does the slope of R go from negative to non-negative?

A)
$$h = \text{mean of } y_1, \dots, y_n$$

B) $h = \text{median of } y_1, \dots, y_n$
C) $h = \text{mode of } y_1, \dots, y_n$

Where the slope's sign changes

The slope of R at h is:

$$\frac{1}{n} \cdot [(\# \text{ of } y_i \text{'s} < h) - (\# \text{ of } y_i \text{'s} > h)]$$

Discussion Question

Suppose that n is odd. At what value of h does the slope of R go from negative to non-negative?

A)
$$h = \text{mean of } y_1, \dots, y_n$$

B) $h = \text{median of } y_1, \dots, y_n$
C) $h = \text{mode of } y_1, \dots, y_n$

Answer: B

The median minimizes mean absolute error, when *n* is odd

- Our problem was: find h^* which minimizes the mean absolute error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$.
- We just determined that when n is odd, the answer is Median(y₁,..., y_n). This is because the median has an equal number of points to the left of it and to the right of it.
- But wait what if n is even?

Consider again our example dataset of 5 salaries.

90,000 94,000 96,000 120,000 160,000

Suppose we collect a 6th salary, so that our data is now

90,000 94,000 96,000 108,000 120,000 160,000

Which of the following correctly describes the h^* that minimizes mean absolute error for our new dataset?

- A) 96,000 only
- B) 108,000 only
- C) 102,000 only
- D) Any value between 96,000 and 108,000, inclusive

Consider again our example dataset of 5 salaries.

90,000 94,000 96,000 120,000 160,000

Suppose we collect a 6th salary, so that our data is now

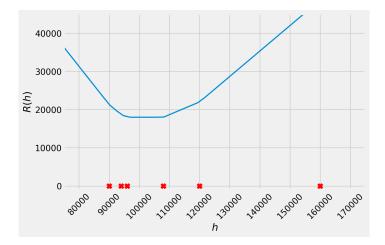
90,000 94,000 96,000 108,000 120,000 160,000

Which of the following correctly describes the h^* that minimizes mean absolute error for our new dataset?

- A) 96,000 only
- B) 108,000 only
- C) 102,000 only
- D) Any value between 96,000 and 108,000, inclusive

Answer: D

Plotting the mean absolute error, with an even number of data points



What do you notice?

The median minimizes mean absolute error

- Our problem was: find h^* which minimizes the mean absolute error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$.
- Regardless of if n is odd or even, the answer is h* = Median(y₁,..., y_n). The best prediction, in terms of mean absolute error, is the median.
 - ▶ When *n* is odd, this answer is unique.
 - When n is even, any number between the middle two data points also minimizes mean absolute error.
 - We define the median of an even number of data points to be the mean of the middle two data points.

Identifying another type of error

Two things we don't like

- 1. Minimizing the mean absolute error wasn't so easy.
- 2. Actually **computing** the median isn't so easy, either.
- Question: Is there another way to measure the quality of a prediction that avoids these problems?

The mean absolute error is not differentiable

We can't compute
$$\frac{d}{dh}|y_i - h|$$
.

Remember: $|y_i - h|$ measures how far h is from y_i .

- ▶ Is there something besides $|y_i h|$ which:
 - 1. Measures how far *h* is from *y*_i, and
 - 2. is differentiable?

The mean absolute error is not differentiable

► We can't compute
$$\frac{d}{dh}|y_i - h|$$
.

Remember: $|y_i - h|$ measures how far h is from y_i .

- Is there something besides |y_i h| which:
 - 1. Measures how far h is from y_i, and
 - 2. is differentiable?

Discussion Question

Which of these would work?

- b) $|y_i h|^2$
- a) $e^{|y_i h|}$ c) $|y_i h|^3$ d) $\cos(y_i - h)$

The squared error

Let h be a prediction and y be the right answer. The squared error is:

$$|y - h|^2 = (y - h)^2$$

- Like absolute error, measures how far *h* is from *y*.
- But unlike absolute error, the squared error is differentiable:

$$\frac{d}{dh}(y-h)^2 = ?$$

The squared error

Reminder that:

$$\frac{d}{dx}x^n = n \cdot x^{n-1}$$

Thus:

$$\frac{d}{dx}x^2 = 2 \cdot x$$

Reminder about the derivative of composite function:

$$(f \cdot g)' = \frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$

Therefore:

The squared error

Reminder that:

$$\frac{d}{dx}x^n = n \cdot x^{n-1}$$

Thus:

$$\frac{d}{dx}x^2 = 2 \cdot x$$

Reminder about the derivative of composite function:

$$(f \circ g)' = \frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$

Therefore:

$$\frac{d}{dh}(y-h)^2 = 2 \cdot (y-h) \cdot \frac{d}{dh}(y-h) =$$
$$= 2 \cdot (y-h) \cdot \left(\frac{dy}{dh} - \frac{dh}{dh}\right) = 2 \cdot (y-h) \cdot (-1) = 2(h-y)$$

The mean squared error

Suppose we predicted a future salary of h₁ = 150,000 before collecting data.

salary	absolute error of h_1	squared error of h ₁
90,000	60,000	(60,000) ²
94,000	56,000	(56,000) ²
96,000	54,000	(54,000) ²
120,000	30,000	(30,000) ²
160,000	10,000	(10,000) ²

total squared error: 1.0652 × 10¹⁰ mean squared error: 2.13 × 10⁹

A good prediction is one with small mean squared error.

The mean squared error

Now suppose we had predicted $h_2 = 115,000$.

salary	absolute error of h_2	squared error of h_2
90,000	25,000	(25,000) ²
94,000	21,000	(21,000) ²
96,000	19,000	(19,000) ²
120,000	5,000	(5,000) ²
160,000	45,000	(45,000) ²

total squared error: 3.47×10^9 mean squared error: 6.95×10^8

A good prediction is one with small mean squared error.

The new idea

Make prediction by minimizing the mean squared error:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Strategy: Take derivative, set to zero, solve for minimizer.

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Discussion Question

Which of these is dR_{sq}/dh ?

A)
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - h)$$

B) 0
C) $\sum_{i=1}^{n} y_i$
D) $\frac{2}{n} \sum_{i=1}^{n} (h - y_i)$

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Discussion Question

Which of these is dR_{sq}/dh ?

A)
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - h)$$

B) 0
C) $\sum_{i=1}^{n} y_i$
D) $\frac{2}{n} \sum_{i=1}^{n} (h - y_i)$

Answer: D

The new idea

Make prediction by minimizing the mean squared error:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Strategy: Take derivative, set to zero, solve for minimizer. We have:

$$\frac{d}{dh}R_{sq}(h) = \frac{d}{dh}\left(\frac{1}{n}\sum_{i=1}^{n}(y_i - h)^2\right)$$
$$\Leftrightarrow \frac{d}{dh}R_{sq}(h) = \frac{1}{n}\sum_{i=1}^{n}\frac{d}{dh}\left[(y_i - h)^2\right]$$
$$\Leftrightarrow \frac{d}{dh}R_{sq}(h) = \frac{2}{n}\sum_{i=1}^{n}(h - y_i)$$

Summary

Summary

- > Our first problem was: find h* which minimizes the mean absolute error, R(h) = 1/n ∑_{i=1}ⁿ |y_i h|.
 > The answer is: Median(y₁,..., y_n).
 - The best prediction, in terms of mean absolute error, is the median.
- We then started to consider another type of error, squared error, that is differentiable and hence is easier to minimize.
- Next time: We will finish determining the value of h* that minimizes mean squared error, and see how it compares to the median.