Lecture 3 – Mean Squared Error and Empirical Risk Minimization

DSC 40A, Fall 2022 @ UC San Diego Mahdi Soleymani, with help from many others

Agenda

- Recap from Lecture 2 minimizing mean absolute error and formulating mean squared error.
- Minimizing mean squared error.
- Comparing the median to the minimizer of mean squared error.
- Empirical risk minimization.

Recap from Lecture 2

The median minimizes mean absolute error

- Our problem was: find h^* which minimizes the mean absolute error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$.
- Regardless of if n is odd or even, the answer is $h^* = \text{Median}(y_1, ..., y_n)$. The **best prediction**, in terms of mean absolute error, is the **median**.
 - ▶ When *n* is odd, this answer is unique.
 - When *n* is even, any number between the middle two data points also minimizes mean absolute error.
 - We define the median of an even number of data points to be the mean of the middle two data points.

The mean absolute error is not differentiable

- We can't compute $\frac{d}{dh}|y_i h|$.
- ► Remember: $|y_i h|$ measures how far h is from y_i .
- **Question:** Is there something besides $|y_i h|$ which:
 - 1. Measures how far h is from y_i , and
 - 2. is differentiable?

The mean absolute error is not differentiable

- We can't compute $\frac{d}{dh}|y_i h|$.
- Remember: $|y_i h|$ measures how far h is from y_i .
- **Question:** Is there something besides $|y_i h|$ which:
 - 1. Measures how far h is from y_i , and
 - 2. is differentiable?
- Answer: Squared error.

The squared error

Let *h* be a prediction and *y* be the true value (i.e. the "right answer"). The **squared error** is:

$$|y - h|^2 = (y - h)^2$$

- Like absolute error, squared error measures how far *h* is from *y*.
- But unlike absolute error, the squared error is differentiable:

$$\frac{d}{dh}(y-h)^2 =$$

The mean squared error

Suppose we predicted a future salary of h_1 = 150,000 before collecting data.

salary	absolute error of h_1	squared error of h_1
90,000	60,000	(60,000) ²
94,000	56,000	$(56,000)^2$
96,000	54,000	(54 , 000) ²
120,000	30,000	$(30,000)^2$
160,000	10,000	$(10,000)^2$

total squared error: 1.0652 × 10¹⁰ mean squared error: 2.13 × 10⁹

► A good prediction is one with small mean squared error.

The mean squared error

Now suppose we had predicted h_2 = 115,000.

salary	absolute error of h_2	squared error of h_2
90,000	25,000	(25,000) ²
94,000	21,000	$(21,000)^2$
96,000	19,000	(19 , 000) ²
120,000	5,000	$(5,000)^2$
160,000	45,000	$(45,000)^2$

total squared error: 3.47 × 10⁹ mean squared error: 6.95 × 10⁸

► A good prediction is one with small mean squared error.

The new idea

Make prediction by minimizing the mean squared error:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Strategy: Take derivative, set to zero, solve for minimizer.

Minimizing mean squared error

$$R_{\rm sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Discussion Question

Which of these is dR_{sq}/dh ?

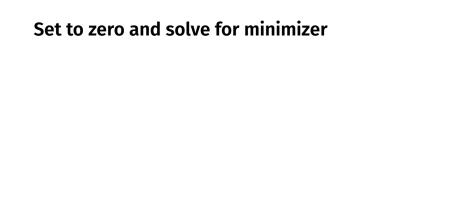
willen of these is
$$u \kappa_{sq} / u h$$
:

a)
$$\frac{1}{n} \sum (y_i - h)$$
 b) 0

c)
$$\sum_{i=1}^{n} y_i$$
 d) $\frac{2}{n} \sum_{i=1}^{n} (h - y_i)$

Solution

$$\frac{dR_{\text{sq}}}{dh} = \frac{d}{dh} \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2 \right]$$

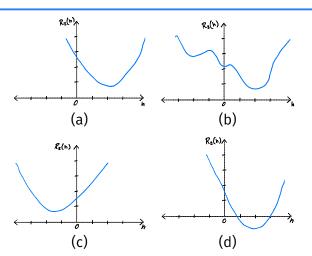


The mean minimizes mean squared error

- Our new problem was: find h^* which minimizes the mean squared error, $R_{sa}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$.
 - ► The answer is: Mean $(y_1, ..., y_n)$.
 - ► The best prediction, in terms of mean squared error, is the mean.
 - This answer is always unique!
- Note: While we used calculus to minimize mean squared error here, there are other ways to do it!
 - See Homework 2.

Discussion Question

Suppose $y_1, ..., y_n$ are salaries. Which plot could be $R_{sq}(h)$?



Comparing the median and mean

Outliers

Consider our original dataset of 5 salaries.

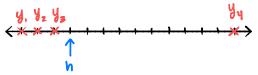
- As it stands, the **median is 96,000** and the **mean is 112,000**.
- What if we add 300,000 to the largest salary?

```
90,000 94,000 96,000 120,000 460,000
```

- Now, the **median is still 96,000** but the **mean is 172,000**!
- Key Idea: The mean is quite sensitive to outliers.

Outliers

The mean is quite sensitive to outliers.

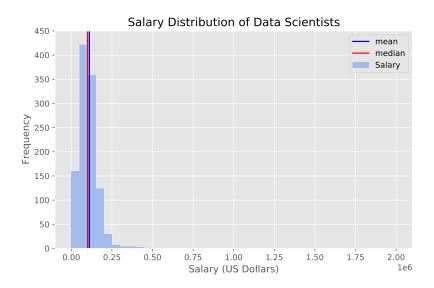


- $|y_4 h|$ is 10 times as big as $|y_3 h|$.
- ► But $(y_4 h)^2$ is 100 times as big as $(y_3 h)^2$.
 - ► This "pulls" h^* towards y_4 .
- Squared error can be dominated by outliers.

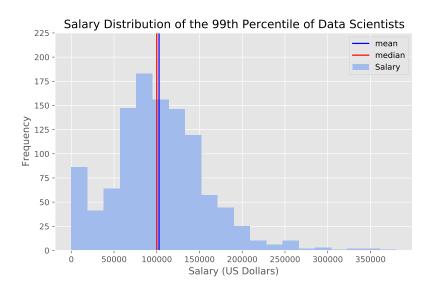
Example: Data Scientist Salaries

- ▶ Dataset of 1121 self-reported data science salaries in the United States from the 2018 StackOverflow survey.
- Median = \$100,000.
- Mean = \$110,933.
- ► Max = \$2,000,000.
- ► Min = \$6.31.
- ▶ 95th Percentile: \$200,000.

Example: Data Scientist Salaries



Example: Data Scientist Salaries



Example: Income Inequality

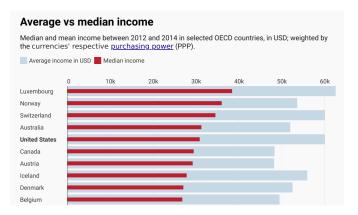
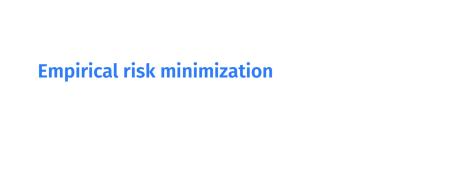


Chart: Lisa Charlotte Rost, Datawrapper

Example: Income Inequality



A general framework

We started with the mean absolute error:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

► Then we introduced the **mean squared error**:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

► They have the same form: both are averages of some measurement that represents how different *h* is from the data.

A general framework

- Definition: A loss function L(h, y) takes in a prediction h and a true value (i.e. a "right answer"), y, and outputs a number measuring how far h is from y (bigger = further).
- ► The absolute loss:

$$L_{\rm abs}(h,y) = |y - h|$$

► The squared loss:

$$L_{sq}(h,y) = (y-h)^2$$

A general framework

Suppose that y₁,..., y_n are some data points, h is a prediction, and L is a loss function. The empirical risk is the average loss on the data set:

$$R_{L}(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_{i})$$

The goal of learning: find h that minimizes R_L . This is called **empirical risk minimization (ERM)**.

The learning recipe

- 1. Pick a loss function.
- 2. Pick a way to minimize the average loss (i.e. empirical risk) on the data.

- Key Idea: The choice of loss function determines the properties of the result. Different loss function = different minimizer = different predictions!
 - Absolute loss yields the median.
 - Squared loss yields the mean.
 - ► The mean is easier to calculate but is more sensitive to outliers

Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:

$$L_{0,1}(h,y) = \begin{cases} 0, & \text{if } h = y \\ 1, & \text{if } h \neq y \end{cases}$$

2. Minimize empirical risk:

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{0,1}(h, y_i)$$

Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:

$$L_{0,1}(h,y) = \begin{cases} 0, & \text{if } h = y \\ 1, & \text{if } h \neq y \end{cases}$$

2. Minimize empirical risk:

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{0,1}(h, y_i)$$

Discussion Question

Suppose $y_1, ..., y_n$ are all distinct. Find $R_{0,1}(y_1)$. a) 0 b) $\frac{1}{n}$ c) $\frac{n-1}{n}$ d) 1

Minimizing empirical risk

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0, & \text{if } h = y_i \\ 1, & \text{if } h \neq y_i \end{cases}$$

Different loss functions lead to different predictions

Loss	Minimizer	Outliers	Differentiable
L _{abs}	median	insensitive	no
$L_{\sf sq}$	mean	sensitive	yes
L _{0,1}	mode	insensitive	no

► The optimal predictions are all summary statistics that measure the center of the data set in different ways.

Summary

Summary

- ► $h^* = \text{Mean}(y_1, ..., y_n)$ minimizes $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$, i.e. the mean minimizes mean squared error.
- The mean absolute error and the mean squared error fit into a general framework called empirical risk minimization.
 - Pick a loss function. We've seen absolute loss, $|y h|^2$, squared loss, $(y h)^2$, and 0-1 loss.
 - Pick a way to minimize the average loss (i.e. empirical risk) on the data.
- By changing the loss function, we change which prediction is considered the best.