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Agenda

▶ Recap from Lecture 2 – minimizing mean absolute error
and formulating mean squared error.

▶ Minimizing mean squared error.

▶ Comparing the median to the minimizer of mean squared
error.

▶ Empirical risk minimization.



Recap from Lecture 2



The median minimizes mean absolute error

▶ Our problem was: find ℎ∗ which minimizes the mean

absolute error, 𝑅(ℎ) = 1
𝑛

𝑛
∑
𝑖=1
|𝑦𝑖 − ℎ|.

▶ Regardless of if 𝑛 is odd or even, the answer is
ℎ∗ = Median(𝑦1, … , 𝑦𝑛). The best prediction, in terms of
mean absolute error, is the median.
▶ When 𝑛 is odd, this answer is unique.

▶ When 𝑛 is even, any number between the middle two
data points also minimizes mean absolute error.

▶ We define the median of an even number of data
points to be the mean of the middle two data points.



The mean absolute error is not differentiable
▶ We can’t compute 𝑑

𝑑ℎ |𝑦𝑖 − ℎ|.

▶ Remember: |𝑦𝑖 − ℎ| measures how far ℎ is from 𝑦𝑖.

▶ Question: Is there something besides |𝑦𝑖 − ℎ| which:
1. Measures how far ℎ is from 𝑦𝑖, and
2. is differentiable?



The mean absolute error is not differentiable
▶ We can’t compute 𝑑

𝑑ℎ |𝑦𝑖 − ℎ|.

▶ Remember: |𝑦𝑖 − ℎ| measures how far ℎ is from 𝑦𝑖.

▶ Question: Is there something besides |𝑦𝑖 − ℎ| which:
1. Measures how far ℎ is from 𝑦𝑖, and
2. is differentiable?

▶ Answer: Squared error.



The squared error

▶ Let ℎ be a prediction and 𝑦 be the true value (i.e. the
“right answer”). The squared error is:

|𝑦 − ℎ|2 = (𝑦 − ℎ)2

▶ Like absolute error, squared error measures how far ℎ is
from 𝑦.

▶ But unlike absolute error, the squared error is
differentiable:

𝑑
𝑑ℎ(𝑦 − ℎ)

2 =



The mean squared error

▶ Suppose we predicted a future salary of ℎ1 = 150,000
before collecting data.

salary absolute error of ℎ1 squared error of ℎ1
90,000 60,000 (60,000)2
94,000 56,000 (56,000)2
96,000 54,000 (54,000)2
120,000 30,000 (30,000)2
160,000 10,000 (10,000)2

total squared error: 1.0652 × 1010
mean squared error: 2.13 × 109

▶ A good prediction is one with small mean squared error.



The mean squared error

▶ Now suppose we had predicted ℎ2 = 115,000.

salary absolute error of ℎ2 squared error of ℎ2
90,000 25,000 (25,000)2
94,000 21,000 (21,000)2
96,000 19,000 (19,000)2
120,000 5,000 (5,000)2
160,000 45,000 (45,000)2

total squared error: 3.47 × 109
mean squared error: 6.95 × 108

▶ A good prediction is one with small mean squared error.



The new idea
▶ Make prediction by minimizing the mean squared error:

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

▶ Strategy: Take derivative, set to zero, solve for minimizer.



Minimizing mean squared error



𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

Discussion Question

Which of these is 𝑑𝑅sq/𝑑ℎ?

a) 1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ) b) 0

c)
𝑛
∑
𝑖=1
𝑦𝑖 d) 2𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)



Solution
𝑑𝑅sq
𝑑ℎ = 𝑑

𝑑ℎ [
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2]



Set to zero and solve for minimizer



The mean minimizes mean squared error

▶ Our new problem was: find ℎ∗ which minimizes the mean
squared error, 𝑅𝑠𝑞(ℎ) =

1
𝑛 ∑

𝑛
𝑖=1(𝑦𝑖 − ℎ)2.

▶ The answer is: Mean(𝑦1, … , 𝑦𝑛).

▶ The best prediction, in terms of mean squared error,
is the mean.

▶ This answer is always unique!

▶ Note: While we used calculus to minimize mean squared
error here, there are other ways to do it!
▶ See Homework 2.



Discussion Question

Suppose 𝑦1, … , 𝑦𝑛 are salaries. Which plot could be
𝑅sq(ℎ)?

(a) (b)

(c) (d)



Comparing the median and mean



Outliers
▶ Consider our original dataset of 5 salaries.

90,000 94,000 96,000 120,000 160,000

▶ As it stands, the median is 96,000 and the mean is
112,000.

▶ What if we add 300,000 to the largest salary?

90,000 94,000 96,000 120,000 460,000

▶ Now, the median is still 96,000 but the mean is 172,000!

▶ Key Idea: The mean is quite sensitive to outliers.



Outliers
▶ The mean is quite sensitive to outliers.

▶ |𝑦4 − ℎ| is 10 times as big as |𝑦3 − ℎ|.

▶ But (𝑦4 − ℎ)2 is 100 times as big as (𝑦3 − ℎ)2.
▶ This “pulls” ℎ∗ towards 𝑦4.

▶ Squared error can be dominated by outliers.



Example: Data Scientist Salaries

▶ Dataset of 1121 self-reported data science salaries in the
United States from the 2018 StackOverflow survey.

▶ Median = $100,000.

▶ Mean = $110,933.

▶ Max = $2,000,000.

▶ Min = $6.31.

▶ 95th Percentile: $200,000.



Example: Data Scientist Salaries
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Example: Data Scientist Salaries
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Example: Income Inequality

Chart: Lisa Charlotte Rost, Datawrapper



Example: Income Inequality
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Empirical risk minimization



A general framework

▶ We started with the mean absolute error:

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
|𝑦𝑖 − ℎ|

▶ Then we introduced the mean squared error:

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

▶ They have the same form: both are averages of some
measurement that represents how different ℎ is from the
data.



A general framework

▶ Definition: A loss function 𝐿(ℎ, 𝑦) takes in a prediction ℎ
and a true value (i.e. a “right answer”), 𝑦, and outputs a
number measuring how far ℎ is from 𝑦 (bigger = further).

▶ The absolute loss:

𝐿abs(ℎ, 𝑦) = |𝑦 − ℎ|

▶ The squared loss:

𝐿sq(ℎ, 𝑦) = (𝑦 − ℎ)2



A general framework

▶ Suppose that 𝑦1, … , 𝑦𝑛 are some data points, ℎ is a
prediction, and 𝐿 is a loss function. The empirical risk is
the average loss on the data set:

𝑅𝐿(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦𝑖)

▶ The goal of learning: find ℎ that minimizes 𝑅𝐿. This is
called empirical risk minimization (ERM).



The learning recipe

1. Pick a loss function.

2. Pick a way to minimize the average loss (i.e. empirical
risk) on the data.

▶ Key Idea: The choice of loss function determines the
properties of the result. Different loss function = different
minimizer = different predictions!
▶ Absolute loss yields the median.

▶ Squared loss yields the mean.

▶ The mean is easier to calculate but is more sensitive
to outliers.



Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:

𝐿0,1(ℎ, 𝑦) = {
0, if ℎ = 𝑦
1, if ℎ ≠ 𝑦

2. Minimize empirical risk:

𝑅0,1(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
𝐿0,1(ℎ, 𝑦𝑖)

Discussion Question

Suppose 𝑦1, … , 𝑦𝑛 are all distinct. Find 𝑅0,1(𝑦1).
a) 0 b) 1𝑛 c) 𝑛−1𝑛 d) 1
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Minimizing empirical risk

𝑅0,1(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
{0, if ℎ = 𝑦𝑖
1, if ℎ ≠ 𝑦𝑖



Different loss functions lead to different
predictions

Loss Minimizer Outliers Differentiable

𝐿abs median insensitive no

𝐿sq mean sensitive yes

𝐿0,1 mode insensitive no

▶ The optimal predictions are all summary statistics that
measure the center of the data set in different ways.



Summary



Summary

▶ ℎ∗ = Mean(𝑦1, … , 𝑦𝑛) minimizes 𝑅𝑠𝑞(ℎ) =
1
𝑛 ∑

𝑛
𝑖=1(𝑦𝑖 − ℎ)2, i.e.

the mean minimizes mean squared error.

▶ The mean absolute error and the mean squared error fit
into a general framework called empirical risk
minimization.
▶ Pick a loss function. We’ve seen absolute loss,
|𝑦 − ℎ|2, squared loss, (𝑦 − ℎ)2, and 0-1 loss.

▶ Pick a way to minimize the average loss (i.e. empirical
risk) on the data.

▶ By changing the loss function, we change which
prediction is considered the best.


