Lecture 3 - Mean Squared Error and Empirical
Risk Minimization

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others



Announcements

Look at the readings linked on the course website!

First Discussion: Monday, October 3rd 2022

First Homework Release: Friday September 30th 2022
First Groupwork Release: Thursday September 29th 2022
Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture

Homework Submission Day: Friday before

See dsc40a.com/calendar for the Office Hours schedule.


dsc40a.com/calendar

Agenda

Recap from Lecture 2 - minimizing mean absolute error
and formulating mean squared error.

Minimizing mean squared error.

Comparing the median to the minimizer of mean squared
error.

Empirical risk minimization.



Recap from Lecture 2



The median minimizes mean absolute error

Our problem was: find h* which minimizes the mean

absolute error, R(h) = Z ly; - hl.

Regardless of if n is odd or even, the answer is
h* = Median(y,, ..., y, ). The best prediction, in terms of
mean absolute error, is the median.

When n is odd, this answer is unique.

When n is even, any number between the middle two
data points also minimizes mean absolute error.

We define the median of an even number of data
points to be the mean of the middle two data points.



The mean absolute error is not differentiable
We can’t compute %lyi - h|.
Remember: |y; - h| measures how far h is from y..
Question: Is there something besides |y, - h| which:

Measures how far h is from y;, and
is differentiable?



The mean absolute error is not differentiable

We can’t compute %lyi - h|.
Remember: |y; - h| measures how far h is from y..

Question: Is there something besides |y, - h| which:

Measures how far h is from y;, and
is differentiable?

Answer: Squared error.



The squared error

Let h be a prediction and y be the true value (i.e. the
“right answer”). The squared error is:

ly-h|?=(y-hy

Like absolute error, squared error measures how far h is
from y.

But unlike absolute error, the squared error is
differentiable:

a2 e



The squared error

Let h be a prediction and y be the true value (i.e. the
“right answer”). The squared error is:

ly-h|?=(y-hy

Like absolute error, squared error measures how far h is
from y.

But unlike absolute error, the squared error is
differentiable:

d
anl- h)? =2(h-y)



The new idea

Find h* by minimizing the mean squared error:
1 n
_ 1 _h\2
Rugl) = 3 2 =)

Strategy: Take the derivative, set it equal to zero, and
solve for the minimizer.



Minimizing mean squared error



Discussion Question

Which of these is dRSq/dh?

Answer: D



Solution

We have:
dqu

_d |1 3 2
dh _dh EZ(yf'h)
I=

Remember that (c- f)'(x) = c- f'(x) where c is a constant wrt x:

| E——



Solution

We have:

d 1<
_h[ﬁ ;(yi ‘h)zl

Remember that (c- f)'(x) = c- f'(x) where c is a constant wrt x:

Sq ndh Z( ]

Remember that (T, f,)'(x) = Z; fi (x):

dR




Solution

We have:

d 1<
_h[ﬁ ;(yi ‘h)zl

Remember that (c- f)'(x) = c- f'(x) where c is a constant wrt x:

Sq ndh z( ]

Remember that (T, f,)'(x) = Z; fi (x):

Raa 1< d
‘HZ% -hy’]= Z(h v;)

i=1

dR




Set to zero and solve for minimizer

Equation:

dR,,

dh
We need to solve this equation to find the criticial points.

=0
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We need to solve this equation to find the criticial points.
dR, n
q _2
ah = p 2 (17¥)=0

i=1



Set to zero and solve for minimizer

Equation:
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We need to solve this equation to find the criticial points.
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Set to zero and solve for minimizer

Equation:
dRy, o
dh
We need to solve this equation to find the criticial points.
dR, n
q _2
ah = p 2 (17¥)=0

i=1

n n n n
@Z(h—yi)=0©Zh—Zyi=0@n-h=Zyi
i=1 i=1 i=1 i=1



Set to zero and solve for minimizer

Equation:

dqu

dh
We need to solve this equation to find the criticial points.

=0

The equation only returns to us a single critical point that is
the mean.



The mean minimizes mean squared error

Our new problem was: find h* which minimizes the mean
squared error, R, (h) = 13 (y; - h)’.

The answer is: Mean(y,, ..., y,).

The equation returns to us a single critical point, but

we still need to prove that this is indeed the global
minimum.

The best prediction, in terms of mean squared error,
is the mean.

This answer is always unique!
Note: While we used calculus to minimize mean squared

error here, there are other ways to do it!
Hint (next lectures): Solve by an iterative algorithm.



Discussion Question

Suppose y,,..., Y, are salaries. Which plot could be

Ry, (h)?
Rl a0
0 h 0 * h
(a) (b)
2w Ralh).



Ralt) R

Because qu(h) > 0, so we eliminate D.
Because y; > 0 so % Y;Y; >0, thus we eliminate C.



Ralt) R

Because qu(h) > 0, so we eliminate D.

Because y; > 0 so % Y;Y; >0, thus we eliminate C.
Because we only have a single critical point, we eliminate B.
Is there another mathematical reason to reject B?



Ralt) R

Because qu(h) > 0, so we eliminate D.

Because y; > 0 so % Y;Y; >0, thus we eliminate C.
Because we only have a single critical point, we eliminate B.
Is there another mathematical reason to reject B? Convexity!



Convex set

Convex Non-Convex

A subset of the Euclidean space is convex if, given any two
points in the subset, the subset contains the whole line
segment that joins them.



Convex function

f(x)

tf (z1) + (1= 1)f (22)

f(tay + (1 t)zs)

Jensen’s inequality:

f(tX1 + (1 - t)Xz) < tf(x1) + (1 - t)f(xz)
forallt € [0, 1].



Properties of convex functions

| x| is a convex function.
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x2 is a convex function.
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Sum of convex functions is a convex function.
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Properties of convex functions
| x| is a convex function.
x? is a convex function.
Sum of convex functions is a convex function.
MAE 157 |y, - h| is a convex function.

MSE % Y. (y; - h)? is a convex function.



Properties of convex functions

| x| is a convex function.
x2 is a convex function.
Sum of convex functions is a convex function.

MAE %Z?ﬂ ly; - h| is a convex function.
MSE % Y. (y; - h)? is a convex function.

If a convex function has a minimum, then that minimum is
global.
Therefore, h* = Mean(y,, .., y,) for MSE.



Comparing the median and mean



Outliers
Consider our original dataset of 5 salaries.

90,000 94,000 96,000 120,000 160,000

As it stands, the median is 96,000 and the mean is
112,000.

What if we add 300,000 to the largest salary?

90,000 94,000 96,000 120,000 460,000
Now, the median is still 96,000 but the mean is 172,000!

Key Idea: The mean is quite sensitive to outliers.



Outliers

The mean is quite sensitive to outliers.

Y, ¥ Y5 9
A
/I\
h
ly, - h|is 10 times as big as |y, - h|.

But (y, - h)? is 100 times as big as (y, - h)*.
This “pulls” h* towards y,.

Squared error can be dominated by outliers.



Example: Data Scientist Salaries

Dataset of 1121 self-reported data science salaries in the
United States from the 2018 StackOverflow survey.

Median = $100,000.
Mean = $110,933.
Max = $2,000,000.
Min = $6.31.

95th Percentile: $200,000.



Example: Data Scientist Salaries
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Example: Data Scientist Salaries

. Salary Distribution of the 99th Percentile of Data Scientists
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Example: Income Inequality

Average vs median income

Median and mean income between 2012 and 2014 in selected OECD countries, in USD; weighted by
the currencies' respective purchasing_power (PPP).

Average income in USD . Median income

Luxembourg

Norway

10k 20k 30k 40k

d
Australia
United States
Canada
Austria
Iceland
Denmark

Belgium

Chart: Lisa Charlotte Rost, Datawrapper
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60k



Example: Income Inequality

B ean Personal income in the United States

— Median Personal Income in the United States
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Shaded areas indicate U.S. recessions Source: U.S. Census Bureau fred.stlouisfed.org



Empirical risk minimization



A general framework
We started with the mean absolute error:
1 n
== ly;-hl
i=1
Then we introduced the mean squared error:
23w
n i=1
They have the same form: both are averages of some

measurement that represents how different h is from the
data.



A general framework
Definition: A loss function L(h, y) takes in a prediction h

and a true value (i.e. a “right answer”), y, and outputs a
number measuring how far h is from y (bigger = further).

The absolute loss:

Labs(hly) = |y_ hl

The squared loss:

Lyg(h,y) = (y - hY’



A general framework

Suppose thaty,,...,y, are some data points, h is a
prediction, and L is a loss function. The empirical risk is
the average loss on the data set:

n
ZLhy,

i=1

3|—\

The goal of learning: find h that minimizes R,. This is
called empirical risk minimization (ERM).



The learning recipe

Pick a loss function.

Pick a way to minimize the average loss (i.e. empirical
risk) on the data.

Key Idea: The choice of loss function determines the
properties of the result. Different loss function = different
minimizer = different predictions!

Absolute loss yields the median.

Squared loss yields the mean.

The mean is easier to calculate but is more sensitive
to outliers.



Example: 0-1 Loss

Pick as our loss function the 0-1 loss:

0, ifh=y
L,.(hy)=
oaW =11 it sy
Minimize empirical risk:

1 n
Ro;](h) = E Z L0’1(hr y,)

i=1



Example: 0-1 Loss

Pick as our loss function the 0-1 loss:

0, ifh=y
o7 (h:¥) = 1, ifhzy

Discussion Question

Suppose y,,...,y, are all distinct. Find Ro,1(y1 ).
a)0 b1 Xl d)1

Answer: C.



Minimizing empirical risk

1«10, ifh=y,
Ry (h) = — i
0 () ngt ifhzy

Notice that: (h )
n - = y
Roa(h) = ————-

We select h* as the value appearing the highest number of
timesin{y,,y,,.,V,}, thatis called the mode.



Different loss functions lead to different
predictions

Loss Minimizer Outliers Differentiable
L,,s median insensitive no

qu mean sensitive yes

L mode insensitive no

0,1

The optimal predictions are all summary statistics that
measure the center of the data set in different ways.



Summary



Summary

h* = Mean(y,, ..., y,) minimizes R, (h) = Ly (y;-hy e,
the mean minimizes mean squared error.

The mean absolute error and the mean squared error fit
into a general framework called empirical risk
minimization.

Pick a loss function. We've seen absolute loss,

ly - h|?, squared loss, (y - h)?, and 0-1 loss.

Pick a way to minimize the average loss (i.e. empirical
risk) on the data.

By changing the loss function, we change which
prediction is considered the best.



Next time

Spread - what is the meaning of the value of R (h*)?
Ryq(h™)?

Creating a new loss function and trying to minimize the
corresponding empirical risk.

We'll get stuck and have to look for a new way to
minimize.



