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Announcements
▶ Look at the readings linked on the course website!

▶ First Discussion: Monday, October 3rd 2022
First Homework Release: Friday September 30th 2022
First Groupwork Release: Thursday September 29th 2022
Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture
Homework Submission Day: Friday before

▶ See dsc40a.com/calendar for the Office Hours schedule.

dsc40a.com/calendar


Agenda

▶ Recap from Lecture 2 – minimizing mean absolute error
and formulating mean squared error.

▶ Minimizing mean squared error.

▶ Comparing the median to the minimizer of mean squared
error.

▶ Empirical risk minimization.



Recap from Lecture 2



The median minimizes mean absolute error

▶ Our problem was: find ℎ∗ which minimizes the mean

absolute error, 𝑅(ℎ) = 1
𝑛

𝑛
∑
𝑖=1
|𝑦𝑖 − ℎ|.

▶ Regardless of if 𝑛 is odd or even, the answer is
ℎ∗ = Median(𝑦1, … , 𝑦𝑛). The best prediction, in terms of
mean absolute error, is the median.
▶ When 𝑛 is odd, this answer is unique.

▶ When 𝑛 is even, any number between the middle two
data points also minimizes mean absolute error.

▶ We define the median of an even number of data
points to be the mean of the middle two data points.



The mean absolute error is not differentiable
▶ We can’t compute 𝑑

𝑑ℎ |𝑦𝑖 − ℎ|.

▶ Remember: |𝑦𝑖 − ℎ| measures how far ℎ is from 𝑦𝑖.

▶ Question: Is there something besides |𝑦𝑖 − ℎ| which:
1. Measures how far ℎ is from 𝑦𝑖, and
2. is differentiable?
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The squared error

▶ Let ℎ be a prediction and 𝑦 be the true value (i.e. the
“right answer”). The squared error is:

|𝑦 − ℎ|2 = (𝑦 − ℎ)2

▶ Like absolute error, squared error measures how far ℎ is
from 𝑦.

▶ But unlike absolute error, the squared error is
differentiable:

𝑑
𝑑ℎ(𝑦 − ℎ)

2 =

2(ℎ − 𝑦)
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The new idea
▶ Find ℎ∗ by minimizing the mean squared error:

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

▶ Strategy: Take the derivative, set it equal to zero, and
solve for the minimizer.



Minimizing mean squared error



𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

Discussion Question

Which of these is 𝑑𝑅sq/𝑑ℎ?

a) 1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ) b) 0

c)
𝑛
∑
𝑖=1
𝑦𝑖 d) 2𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)

Answer: D



Solution
We have:

𝑑𝑅sq
𝑑ℎ = 𝑑

𝑑ℎ [
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2]

Remember that (𝑐 ⋅ 𝑓)′(𝑥) = 𝑐 ⋅ 𝑓′(𝑥) where 𝑐 is a constant wrt 𝑥:

𝑑𝑅sq
𝑑ℎ = 1𝑛

𝑑
𝑑ℎ [

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2]

Remember that (∑𝑖 𝑓𝑖)′(𝑥) = ∑𝑖 𝑓
′
𝑖 (𝑥):

𝑑𝑅sq
𝑑ℎ = 1𝑛

𝑛
∑
𝑖=1

𝑑
𝑑ℎ [(𝑦𝑖 − ℎ)

2] = 2𝑛
𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)
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Set to zero and solve for minimizer
Equation:

𝑑𝑅sq
𝑑ℎ = 0

We need to solve this equation to find the criticial points.

𝑑𝑅sq
𝑑ℎ = 2𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) = 0

⇔
𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) = 0 ⇔

𝑛
∑
𝑖=1
ℎ −

𝑛
∑
𝑖=1
𝑦𝑖 = 0 ⇔ 𝑛 ⋅ ℎ =

𝑛
∑
𝑖=1
𝑦𝑖

⇔ ℎ = 1𝑛
𝑛
∑
𝑖=1
𝑦𝑖

The equation only returns to us a single critical point that is
the mean.
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The mean minimizes mean squared error
▶ Our new problem was: find ℎ∗ which minimizes the mean
squared error, 𝑅𝑠𝑞(ℎ) =

1
𝑛 ∑

𝑛
𝑖=1(𝑦𝑖 − ℎ)2.

▶ The answer is: Mean(𝑦1, … , 𝑦𝑛).
The equation returns to us a single critical point, but
we still need to prove that this is indeed the global
minimum.

▶ The best prediction, in terms of mean squared error,
is the mean.

▶ This answer is always unique!

▶ Note: While we used calculus to minimize mean squared
error here, there are other ways to do it!
▶ Hint (next lectures): Solve by an iterative algorithm.



Discussion Question

Suppose 𝑦1, … , 𝑦𝑛 are salaries. Which plot could be
𝑅sq(ℎ)?

(a) (b)

(c) (d)
Because 𝑅sq(ℎ) ≥ 0, so we eliminate D.

Because 𝑦𝑖 > 0 so
1
𝑛 ∑𝑖 𝑦𝑖 > 0, thus we eliminate C.

Because we only have a single critical point, we eliminate B.
Is there another mathematical reason to reject B? Convexity!
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Convex set

Convex Non-Convex

A subset of the Euclidean space is convex if, given any two
points in the subset, the subset contains the whole line
segment that joins them.



Convex function

Jensen’s inequality:

𝑓(𝑡𝑥1 + (1 − 𝑡)𝑥2) ≤ 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2)

for all 𝑡 ∈ [0, 1].



Properties of convex functions

▶ |𝑥| is a convex function.

▶ 𝑥2 is a convex function.

▶ Sum of convex functions is a convex function.

▶ MAE 1
𝑛 ∑

𝑛
𝑖=1 |𝑦𝑖 − ℎ| is a convex function.

▶ MSE 1
𝑛 ∑

𝑛
𝑖=1(𝑦𝑖 − ℎ)2 is a convex function.

▶ If a convex function has a minimum, then that minimum is
global.
Therefore, ℎ∗ = Mean(𝑦1, .., 𝑦𝑛) for MSE.
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Comparing the median and mean



Outliers
▶ Consider our original dataset of 5 salaries.

90,000 94,000 96,000 120,000 160,000

▶ As it stands, the median is 96,000 and the mean is
112,000.

▶ What if we add 300,000 to the largest salary?

90,000 94,000 96,000 120,000 460,000

▶ Now, the median is still 96,000 but the mean is 172,000!

▶ Key Idea: The mean is quite sensitive to outliers.



Outliers
▶ The mean is quite sensitive to outliers.

▶ |𝑦4 − ℎ| is 10 times as big as |𝑦3 − ℎ|.

▶ But (𝑦4 − ℎ)2 is 100 times as big as (𝑦3 − ℎ)2.
▶ This “pulls” ℎ∗ towards 𝑦4.

▶ Squared error can be dominated by outliers.



Example: Data Scientist Salaries

▶ Dataset of 1121 self-reported data science salaries in the
United States from the 2018 StackOverflow survey.

▶ Median = $100,000.

▶ Mean = $110,933.

▶ Max = $2,000,000.

▶ Min = $6.31.

▶ 95th Percentile: $200,000.



Example: Data Scientist Salaries

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Salary (US Dollars) 1e6

0

50

100

150

200

250

300

350

400

450

Fr
eq

ue
nc

y

Salary Distribution of Data Scientists
mean
median
Salary



Example: Data Scientist Salaries
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Example: Income Inequality

Chart: Lisa Charlotte Rost, Datawrapper



Example: Income Inequality
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Empirical risk minimization



A general framework

▶ We started with the mean absolute error:

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
|𝑦𝑖 − ℎ|

▶ Then we introduced the mean squared error:

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

▶ They have the same form: both are averages of some
measurement that represents how different ℎ is from the
data.



A general framework

▶ Definition: A loss function 𝐿(ℎ, 𝑦) takes in a prediction ℎ
and a true value (i.e. a “right answer”), 𝑦, and outputs a
number measuring how far ℎ is from 𝑦 (bigger = further).

▶ The absolute loss:

𝐿abs(ℎ, 𝑦) = |𝑦 − ℎ|

▶ The squared loss:

𝐿sq(ℎ, 𝑦) = (𝑦 − ℎ)2



A general framework

▶ Suppose that 𝑦1, … , 𝑦𝑛 are some data points, ℎ is a
prediction, and 𝐿 is a loss function. The empirical risk is
the average loss on the data set:

𝑅𝐿(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦𝑖)

▶ The goal of learning: find ℎ that minimizes 𝑅𝐿. This is
called empirical risk minimization (ERM).



The learning recipe

1. Pick a loss function.

2. Pick a way to minimize the average loss (i.e. empirical
risk) on the data.

▶ Key Idea: The choice of loss function determines the
properties of the result. Different loss function = different
minimizer = different predictions!
▶ Absolute loss yields the median.

▶ Squared loss yields the mean.

▶ The mean is easier to calculate but is more sensitive
to outliers.



Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:

𝐿0,1(ℎ, 𝑦) = {
0, if ℎ = 𝑦
1, if ℎ ≠ 𝑦

2. Minimize empirical risk:

𝑅0,1(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
𝐿0,1(ℎ, 𝑦𝑖)

Discussion Question

Suppose 𝑦1, … , 𝑦𝑛 are all distinct. Find 𝑅0,1(𝑦1).
a) 0 b) 1𝑛 c) 𝑛−1𝑛 d) 1

Answer: C.
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Minimizing empirical risk

𝑅0,1(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
{0, if ℎ = 𝑦𝑖
1, if ℎ ≠ 𝑦𝑖

Notice that:
𝑅0,1(ℎ) =

𝑛 − #(ℎ = 𝑦𝑖)
𝑛

We select ℎ∗ as the value appearing the highest number of
times in {𝑦1, 𝑦2, .., 𝑦𝑛}, that is called the mode.



Different loss functions lead to different
predictions

Loss Minimizer Outliers Differentiable

𝐿abs median insensitive no

𝐿sq mean sensitive yes

𝐿0,1 mode insensitive no

▶ The optimal predictions are all summary statistics that
measure the center of the data set in different ways.



Summary



Summary

▶ ℎ∗ = Mean(𝑦1, … , 𝑦𝑛) minimizes 𝑅𝑠𝑞(ℎ) =
1
𝑛 ∑

𝑛
𝑖=1(𝑦𝑖 − ℎ)2, i.e.

the mean minimizes mean squared error.

▶ The mean absolute error and the mean squared error fit
into a general framework called empirical risk
minimization.
▶ Pick a loss function. We’ve seen absolute loss,
|𝑦 − ℎ|2, squared loss, (𝑦 − ℎ)2, and 0-1 loss.

▶ Pick a way to minimize the average loss (i.e. empirical
risk) on the data.

▶ By changing the loss function, we change which
prediction is considered the best.



Next time

▶ Spread – what is the meaning of the value of 𝑅𝑎𝑏𝑠(ℎ∗)?
𝑅𝑠𝑞(ℎ∗)?

▶ Creating a new loss function and trying to minimize the
corresponding empirical risk.
▶ We’ll get stuck and have to look for a new way to
minimize.


