Lecture 3 - Mean Squared Error and Empirical Risk Minimization

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Announcements

- Look at the readings linked on the course website!
- First Discussion: Monday, October 3rd 2022

First Homework Release: Friday September 30th 2022
First Groupwork Release: Thursday September 29th 2022
Groupwork Relsease Day: Thursday afternoon Groupwork Submission Day: Monday midnight Homework Release Day: Friday after lecture Homework Submission Day: Friday before

- See dsc40a.com/calendar for the Office Hours schedule.

Agenda

- Recap from Lecture 2 - minimizing mean absolute error and formulating mean squared error.
- Minimizing mean squared error.
- Comparing the median to the minimizer of mean squared error.
- Empirical risk minimization.

Recap from Lecture 2

The median minimizes mean absolute error

- Our problem was: find h^{*} which minimizes the mean absolute error, $R(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|$.
- Regardless of if n is odd or even, the answer is $h^{*}=\operatorname{Median}\left(y_{1}, \ldots, y_{n}\right)$. The best prediction, in terms of mean absolute error, is the median.
\downarrow When n is odd, this answer is unique.
- When n is even, any number between the middle two data points also minimizes mean absolute error.
- We define the median of an even number of data points to be the mean of the middle two data points.

The mean absolute error is not differentiable

- We can't compute $\frac{d}{d h}\left|y_{i}-h\right|$.
- Remember: $\left|y_{i}-h\right|$ measures how far h is from y_{i}.
- Question: Is there something besides $\left|y_{i}-h\right|$ which:

1. Measures how far h is from y_{i}, and
2. is differentiable?

The mean absolute error is not differentiable

- We can't compute $\frac{d}{d h}\left|y_{i}-h\right|$.
- Remember: $\left|y_{i}-h\right|$ measures how far h is from y_{i}.
- Question: Is there something besides $\left|y_{i}-h\right|$ which:

1. Measures how far h is from y_{i}, and
2. is differentiable?

- Answer: Squared error.

The squared error

- Let h be a prediction and y be the true value (i.e. the "right answer"). The squared error is:

$$
|y-h|^{2}=(y-h)^{2}
$$

- Like absolute error, squared error measures how far h is from y.
- But unlike absolute error, the squared error is differentiable:

$$
\frac{d}{d h}(y-h)^{2}=
$$

The squared error

- Let h be a prediction and y be the true value (i.e. the "right answer"). The squared error is:

$$
|y-h|^{2}=(y-h)^{2}
$$

- Like absolute error, squared error measures how far h is from y.
- But unlike absolute error, the squared error is differentiable:

$$
\frac{d}{d h}(y-h)^{2}=2(h-y)
$$

The new idea

- Find h^{*} by minimizing the mean squared error:

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}
$$

- Strategy: Take the derivative, set it equal to zero, and solve for the minimizer.

Minimizing mean squared error

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}
$$

Discussion Question

Which of these is $d R_{\mathrm{sq}} / d h$?
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)$
b) 0
c) $\sum_{i=1}^{n} y_{i}$
d) $\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)$

Answer: D

Solution

We have:

$$
\frac{d R_{\mathrm{sq}}}{d h}=\frac{d}{d h}\left[\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}\right]
$$

Remember that $(c \cdot f)^{\prime}(x)=c \cdot f^{\prime}(x)$ where c is a constant wrt x :

Solution

We have:

$$
\frac{d R_{\mathrm{sq}}}{d h}=\frac{d}{d h}\left[\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}\right]
$$

Remember that $(c \cdot f)^{\prime}(x)=c \cdot f^{\prime}(x)$ where c is a constant wrt x :

$$
\frac{d R_{\mathrm{sq}}}{d h}=\frac{1}{n} \frac{d}{d h}\left[\sum_{i=1}^{n}\left(y_{i}-h\right)^{2}\right]
$$

Remember that $\left(\sum_{i} f_{i}\right)^{\prime}(x)=\sum_{i} f_{i}^{\prime}(x)$:

Solution

We have:

$$
\frac{d R_{\mathrm{sq}}}{d h}=\frac{d}{d h}\left[\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}\right]
$$

Remember that $(c \cdot f)^{\prime}(x)=c \cdot f^{\prime}(x)$ where c is a constant wrt x :

$$
\frac{d R_{\mathrm{sq}}}{d h}=\frac{1}{n} \frac{d}{d h}\left[\sum_{i=1}^{n}\left(y_{i}-h\right)^{2}\right]
$$

Remember that $\left(\Sigma_{i} f_{i}\right)^{\prime}(x)=\Sigma_{i} f_{i}^{\prime}(x)$:

$$
\frac{d R_{\mathrm{sq}}}{d h}=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[\left(y_{i}-h\right)^{2}\right]=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)
$$

Set to zero and solve for minimizer

Equation:

$$
\frac{d R_{\mathrm{sq}}}{d h}=0
$$

We need to solve this equation to find the criticial points.

Set to zero and solve for minimizer

Equation:

$$
\frac{d R_{\mathrm{sq}}}{d h}=0
$$

We need to solve this equation to find the criticial points.

$$
\begin{aligned}
& \quad \frac{d R_{\mathrm{sq}}}{d h}=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)=0 \\
& \Leftrightarrow \sum_{i=1}^{n}\left(h-y_{i}\right)=0
\end{aligned}
$$

Set to zero and solve for minimizer

Equation:

$$
\frac{d R_{\mathrm{sq}}}{d h}=0
$$

We need to solve this equation to find the criticial points.

$$
\begin{array}{r}
\frac{d R_{\mathrm{sq}}}{d h}=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)=0 \\
\Leftrightarrow \sum_{i=1}^{n}\left(h-y_{i}\right)=0 \Leftrightarrow \sum_{i=1}^{n} h-\sum_{i=1}^{n} y_{i}=0
\end{array}
$$

Set to zero and solve for minimizer

Equation:

$$
\frac{d R_{\mathrm{sq}}}{d h}=0
$$

We need to solve this equation to find the criticial points.

$$
\begin{gathered}
\frac{d R_{\mathrm{sq}}}{d h}=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)=0 \\
\Leftrightarrow \sum_{i=1}^{n}\left(h-y_{i}\right)=0 \Leftrightarrow \sum_{i=1}^{n} h-\sum_{i=1}^{n} y_{i}=0 \Leftrightarrow n \cdot h=\sum_{i=1}^{n} y_{i}
\end{gathered}
$$

Set to zero and solve for minimizer

Equation:

$$
\frac{d R_{\mathrm{sq}}}{d h}=0
$$

We need to solve this equation to find the criticial points.

$$
\begin{gathered}
\frac{d R_{\text {sq }}}{d h}=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)=0 \\
\Leftrightarrow \sum_{i=1}^{n}\left(h-y_{i}\right)=0 \Leftrightarrow \sum_{i=1}^{n} h-\sum_{i=1}^{n} y_{i}=0 \Leftrightarrow n \cdot h=\sum_{i=1}^{n} y_{i} \\
\Leftrightarrow h=\frac{1}{n} \sum_{i=1}^{n} y_{i}
\end{gathered}
$$

The equation only returns to us a single critical point that is the mean.

The mean minimizes mean squared error

- Our new problem was: find h^{*} which minimizes the mean squared error, $R_{s q}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}$.
\Rightarrow The answer is: $\operatorname{Mean}\left(y_{1}, \ldots, y_{n}\right)$.
The equation returns to us a single critical point, but we still need to prove that this is indeed the global minimum.
- The best prediction, in terms of mean squared error, is the mean.
- This answer is always unique!
- Note: While we used calculus to minimize mean squared error here, there are other ways to do it!
- Hint (next lectures): Solve by an iterative algorithm.

Discussion Question

Suppose y_{1}, \ldots, y_{n} are salaries. Which plot could be $R_{\mathrm{sq}}(h)$?

(a)

(c)

(b)

(d)

(a)

(c)

(b)

(d)

Because $R_{\text {sq }}(h) \geq 0$, so we eliminate D.
Because $y_{i}>0$ so $\frac{1}{n} \sum_{i} y_{i}>0$, thus we eliminate C.

Because $R_{\text {sq }}(h) \geq 0$, so we eliminate D.
Because $y_{i}>0$ so $\frac{1}{n} \sum_{i} y_{i}>0$, thus we eliminate C. Because we only have a single critical point, we eliminate B. Is there another mathematical reason to reject B?

Because $R_{\text {sq }}(h) \geq 0$, so we eliminate D.
Because $y_{i}>0$ so $\frac{1}{n} \sum_{i} y_{i}>0$, thus we eliminate C. Because we only have a single critical point, we eliminate B. Is there another mathematical reason to reject B? Convexity!

Convex set

A subset of the Euclidean space is convex if, given any two points in the subset, the subset contains the whole line segment that joins them.

Convex function

Jensen's inequality:

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

for all $t \in[0,1]$.

Properties of convex functions

- $|x|$ is a convex function.

Properties of convex functions

> $|x|$ is a convex function.

- x^{2} is a convex function.

Properties of convex functions

- $|x|$ is a convex function.
- x^{2} is a convex function.
- Sum of convex functions is a convex function.

Properties of convex functions

- $|x|$ is a convex function.
- x^{2} is a convex function.
- Sum of convex functions is a convex function.
- MAE $\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|$ is a convex function.

Properties of convex functions

- $|x|$ is a convex function.
- x^{2} is a convex function.
- Sum of convex functions is a convex function.
- MAE $\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|$ is a convex function.
- MSE $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}$ is a convex function.

Properties of convex functions

- $|x|$ is a convex function.
- x^{2} is a convex function.
- Sum of convex functions is a convex function.
- MAE $\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|$ is a convex function.
- MSE $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}$ is a convex function.
- If a convex function has a minimum, then that minimum is global.
Therefore, $h^{*}=\operatorname{Mean}\left(y_{1}, . ., y_{n}\right)$ for MSE.

Comparing the median and mean

Outliers

- Consider our original dataset of 5 salaries.

$$
\begin{array}{lllll}
90,000 & 94,000 & 96,000 & 120,000 & 160,000
\end{array}
$$

- As it stands, the median is 96,000 and the mean is 112,000.
- What if we add 300,000 to the largest salary?

$$
\begin{array}{lllll}
90,000 & 94,000 & 96,000 & 120,000 & 460,000
\end{array}
$$

- Now, the median is still 96,000 but the mean is 172,000 .
- Key Idea: The mean is quite sensitive to outliers.

Outliers

- The mean is quite sensitive to outliers.

$\Rightarrow\left|y_{4}-h\right|$ is 10 times as big as $\left|y_{3}-h\right|$.
- But $\left(y_{4}-h\right)^{2}$ is 100 times as big as $\left(y_{3}-h\right)^{2}$.
- This "pulls" h^{*} towards y_{4}.
- Squared error can be dominated by outliers.

Example: Data Scientist Salaries

- Dataset of 1121 self-reported data science salaries in the United States from the 2018 StackOverflow survey.
- Median = \$100,000.
- Mean = \$110,933.
- $\operatorname{Max}=\$ 2,000,000$.
$\Rightarrow \operatorname{Min}=\$ 6.31$.
- 95th Percentile: $\$ 200,000$.

Example: Data Scientist Salaries

Example: Data Scientist Salaries

Salary Distribution of the 99th Percentile of Data Scientists

Example: Income Inequality

Average vs median income

Median and mean income between 2012 and 2014 in selected OECD countries, in USD; weighted by the currencies' respective purchasing_power (PPP).
\square Average income in USD \square Median income

Chart: Lisa Charlotte Rost, Datawrapper

Example: Income Inequality

Empirical risk minimization

A general framework

- We started with the mean absolute error:

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|
$$

- Then we introduced the mean squared error:

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}
$$

- They have the same form: both are averages of some measurement that represents how different h is from the data.

A general framework

- Definition: A loss function $L(h, y)$ takes in a prediction h and a true value (i.e. a "right answer"), y, and outputs a number measuring how far h is from y (bigger = further).
- The absolute loss:

$$
L_{a b s}(h, y)=|y-h|
$$

> The squared loss:

$$
L_{s q}(h, y)=(y-h)^{2}
$$

A general framework

- Suppose that y_{1}, \ldots, y_{n} are some data points, h is a prediction, and L is a loss function. The empirical risk is the average loss on the data set:

$$
R_{L}(h)=\frac{1}{n} \sum_{i=1}^{n} L\left(h, y_{i}\right)
$$

\Rightarrow The goal of learning: find h that minimizes R_{L}. This is called empirical risk minimization (ERM).

The learning recipe

1. Pick a loss function.
2. Pick a way to minimize the average loss (i.e. empirical risk) on the data.

- Key Idea: The choice of loss function determines the properties of the result. Different loss function = different minimizer = different predictions!
- Absolute loss yields the median.
- Squared loss yields the mean.
\checkmark The mean is easier to calculate but is more sensitive to outliers.

Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:

$$
L_{0,1}(h, y)= \begin{cases}0, & \text { if } h=y \\ 1, & \text { if } h \neq y\end{cases}
$$

2. Minimize empirical risk:

$$
R_{0,1}(h)=\frac{1}{n} \sum_{i=1}^{n} L_{0,1}\left(h, y_{i}\right)
$$

Example: 0-1 Loss

1. Pick as our loss function the $0-1$ loss:

$$
L_{0,1}(h, y)= \begin{cases}0, & \text { if } h=y \\ 1, & \text { if } h \neq y\end{cases}
$$

2. Minimize empirical risk:

$$
R_{0,1}(h)=\frac{1}{n} \sum_{i=1}^{n} L_{0,1}\left(h, y_{i}\right)
$$

Discussion Question

Suppose y_{1}, \ldots, y_{n} are all distinct. Find $R_{0,1}\left(y_{1}\right)$.
a) 0
b) $\frac{1}{n}$
c) $\frac{n-1}{n}$
d) 1

Answer: C.

Minimizing empirical risk

$$
R_{0,1}(h)=\frac{1}{n} \sum_{i=1}^{n} \begin{cases}0, & \text { if } h=y_{i} \\ 1, & \text { if } h \neq y_{i}\end{cases}
$$

Notice that:

$$
R_{0,1}(h)=\frac{n-\#\left(h=y_{i}\right)}{n}
$$

We select h^{*} as the value appearing the highest number of times in $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, that is called the mode.

Different loss functions lead to different predictions

Loss	Minimizer	Outliers	Differentiable
$L_{\text {abs }}$	median	insensitive	no
$L_{\text {sq }}$	mean	sensitive	yes
$L_{0,1}$	mode	insensitive	no

- The optimal predictions are all summary statistics that measure the center of the data set in different ways.

Summary

Summary

$\Rightarrow h^{*}=$ Mean $\left(y_{1}, \ldots, y_{n}\right)$ minimizes $R_{s q}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}$, i.e. the mean minimizes mean squared error.

- The mean absolute error and the mean squared error fit into a general framework called empirical risk minimization.
- Pick a loss function. We've seen absolute loss, $|y-h|^{2}$, squared loss, $(y-h)^{2}$, and 0-1 loss.
- Pick a way to minimize the average loss (i.e. empirical risk) on the data.
- By changing the loss function, we change which prediction is considered the best.

Next time

\Rightarrow Spread - what is the meaning of the value of $R_{a b s}\left(h^{*}\right)$? $R_{s q}\left(h^{*}\right)$?

- Creating a new loss function and trying to minimize the corresponding empirical risk.
- We'll get stuck and have to look for a new way to minimize.

