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Announcements
▶ Look at the readings linked on the course website!

▶ First Discussion: Monday, October 3rd 2022
First Homework Release: Friday September 30th 2022
First Groupwork Release: Thursday September 29th 2022
Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture
Homework Submission Day: Friday before

▶ See dsc40a.com/calendar for the Office Hours schedule.

dsc40a.com/calendar


Agenda

▶ Recap of empirical risk minimization.

▶ Center and spread.

▶ A new loss function.

▶ Gradient descent.



Recap of empirical risk minimization



Empirical risk minimization

▶ Goal: Given a dataset 𝑦1, 𝑦2, ..., 𝑦𝑛, determine the best
prediction ℎ∗.

▶ Strategy:
1. Choose a loss function, 𝐿(ℎ, 𝑦), that measures how far
any particular prediction ℎ is from the “right answer”
𝑦.

2. Minimize empirical risk (also known as average loss)
over the entire dataset. The value(s) of ℎ that
minimize empirical risk are the resulting “best
predictions”.

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦𝑖)



Absolute loss and squared loss

▶ General form of empirical risk:

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦𝑖)

▶ Absolute loss: 𝐿abs(ℎ, 𝑦) = |𝑦 − ℎ|.
▶ Empirical risk: 𝑅𝑎𝑏𝑠(ℎ) =

1
𝑛 ∑

𝑛
𝑖=1 |𝑦𝑖 − ℎ|. Also called

“mean absolute error”.
▶ Minimized by ℎ∗ = Median(𝑦1, 𝑦2, ..., 𝑦𝑛).

▶ Squared loss: 𝐿sq(ℎ, 𝑦) = (𝑦 − ℎ)2.
▶ Empirical risk: 𝑅𝑠𝑞(ℎ) =

1
𝑛 ∑

𝑛
𝑖=1(𝑦𝑖 − ℎ)2. Also called

“mean squared error”.
▶ Minimized by ℎ∗ = Mean(𝑦1, 𝑦2, ..., 𝑦𝑛).



Discussion Question

Consider a dataset 𝑦1, 𝑦2, ..., 𝑦𝑛.
Recall,

𝑅𝑎𝑏𝑠(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
|𝑦𝑖 − ℎ|

𝑅𝑠𝑞(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

Is it true that, for any ℎ, [𝑅𝑎𝑏𝑠(ℎ)]2 = 𝑅𝑠𝑞(ℎ)?
a) True
b) False

Answer: False. But why?
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Absolute and square loss

Cauchy-Schwarz (Bunyakovsky)’s inequality:

(𝑎1𝑏1 + 𝑎2𝑏2 + ... + 𝑎𝑛𝑏𝑛)2 ≤ (𝑎21 + 𝑎22 + ... + 𝑎2𝑛)(𝑏21 + 𝑏22 + ... + 𝑏2𝑛)

or in summation form:

(
𝑛
∑
𝑖=1
𝑎𝑖𝑏𝑖)

2
≤ (

𝑛
∑
𝑖=1
𝑎2𝑖 )(

𝑛
∑
𝑖=1
𝑏2𝑖 )

or in vector with inner product & norm form:

⟨𝑎, 𝑏⟩ ≤ ||𝑎|| ⋅ ||𝑏||

where 𝑎 = (𝑎1, ..., 𝑎𝑛)𝑇 and 𝑏 = (𝑏1, ..., 𝑏𝑛)𝑇 .



Absolute and square loss
Keep in mind that:

(
𝑛
∑
𝑖=1
𝑎𝑖𝑏𝑖)

2
≤ (

𝑛
∑
𝑖=1
𝑎2𝑖 )(

𝑛
∑
𝑖=1
𝑏2𝑖 )

We have:

[𝑅𝑎𝑏𝑠(ℎ)]2 = (
𝑛
∑
𝑖=1

1
𝑛|𝑦𝑖 − ℎ|)

2
≤ (

𝑛
∑
𝑖=1

1
𝑛2 )(

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2)

The right hand side is:

1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2 = 𝑅𝑠𝑞(ℎ)

Therefore:
[𝑅𝑎𝑏𝑠(ℎ)]2 ≤ 𝑅𝑠𝑞(ℎ)



Center and spread



What does it mean?
▶ General form of empirical risk:

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦𝑖)

▶ The input ℎ∗ that minimizes 𝑅(ℎ) is some measure of the
center of the data set.
▶ e.g. median, mean, mode.

▶ The minimum output 𝑅(ℎ∗) represents some measure of
the spread, or variation, in the data set.



Absolute loss
▶ The empirical risk for the absolute loss is

𝑅𝑎𝑏𝑠(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
|𝑦𝑖 − ℎ|

▶ 𝑅𝑎𝑏𝑠(ℎ) is minimized at ℎ∗ = Median(𝑦1, 𝑦2, … , 𝑦𝑛).

▶ Therefore, the minimum value of 𝑅𝑎𝑏𝑠(ℎ) is

𝑅𝑎𝑏𝑠(ℎ∗) = 𝑅𝑎𝑏𝑠(Median(𝑦1, 𝑦2, … , 𝑦𝑛))

= 1𝑛
𝑛
∑
𝑖=1
|𝑦𝑖 −Median(𝑦1, 𝑦2, … , 𝑦𝑛)|.



Mean absolute deviation from the median
▶ The minimium value of 𝑅𝑎𝑏𝑠(ℎ) is the mean absolute
deviation from the median.

1
𝑛

𝑛
∑
𝑖=1
|𝑦𝑖 −Median(𝑦1, 𝑦2, … , 𝑦𝑛)|

▶ It measures how far each data point is from the median,
on average.

Discussion Question

For the data set 2, 3, 3, 4, what is the mean absolute
deviation from the median?

a) 0 b) 12 c) 1 d) 2

Answer: B.
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Squared loss

▶ The empirical risk for the squared loss is

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

▶ 𝑅sq(ℎ) is minimized at ℎ∗ = Mean(𝑦1, 𝑦2, … , 𝑦𝑛).

▶ Therefore, the minimum value of 𝑅sq(ℎ) is

𝑅sq(ℎ∗) = 𝑅sq(Mean(𝑦1, 𝑦2, … , 𝑦𝑛))

= 1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 −Mean(𝑦1, 𝑦2, … , 𝑦𝑛))2.



Variance
▶ The minimium value of 𝑅sq(ℎ) is the mean squared
deviation from the mean, more commonly known as the
variance.

1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 −Mean(𝑦1, 𝑦2, … , 𝑦𝑛))2

▶ It measures the squared distance of each data point from
the mean, on average.

▶ Its square root is called the standard deviation.



Variance



0-1 loss
▶ The empirical risk for the 0-1 loss is

𝑅0,1(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
{0, if ℎ = 𝑦𝑖
1, if ℎ ≠ 𝑦𝑖

▶ This is the proportion (between 0 and 1) of data points
not equal to ℎ.

▶ 𝑅0,1(ℎ) is minimized at ℎ∗ = Mode(𝑦1, 𝑦2, … , 𝑦𝑛).

▶ Therefore, 𝑅0,1(ℎ∗) is the proportion of data points not
equal to the mode.



A poor way to measure spread

▶ The minimium value of 𝑅0,1(ℎ) is the proportion of data
points not equal to the mode.

▶ A higher value means less of the data is clustered at the
mode.

▶ Just as the mode is a very simplistic way to measure the
center of the data, this is a very crude way to measure
spread.



Summary of center and spread

▶ Different loss functions lead to empirical risk functions
that are minimized at various measures of center.

▶ The minimum values of these risk runctions are various
measures of spread.

▶ There are many different ways to measure both center and
spread. These are sometimes called descriptive statistics.



A new loss function



Plotting a loss function

▶ The plot of a loss function tells us how it treats outliers.

▶ Consider 𝑦 to be some fixed value. Plot 𝐿abs(ℎ, 𝑦) = |𝑦 − ℎ|:
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Discussion Question

Suppose 𝐿 considers all outliers to be equally as bad.
What would it look like far away from 𝑦?

a) flat
b) rapidly decreasing
c) rapidly increasing

Answer: C.
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A very insensitive loss

▶ We’ll call this loss 𝐿𝑢𝑐𝑠𝑑 because it doesn’t have a name.
We want:

limℎ→+∞𝐿(ℎ, 𝑦) = constant < +∞
limℎ→−∞𝐿(ℎ, 𝑦) = constant < +∞



Discussion Question

Which of these could be 𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦)?

a) 𝑒−(𝑦−ℎ)2

b) 1 − 𝑒−(𝑦−ℎ)2

c) 1 − (𝑦 − ℎ)2

d) 1 − 𝑒−|𝑦−ℎ|
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a) 𝑒−(𝑦−ℎ)2

b) 1 − 𝑒−(𝑦−ℎ)2

c) 1 − (𝑦 − ℎ)2

d) 1 − 𝑒−|𝑦−ℎ|

Why to reject A?

limℎ→+∞𝑒−(𝑦−ℎ)
2 = 0

ℎ >> 𝑦 is clearly wrong but the loss says it is good.
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Discussion Question
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D is quite okay:
limℎ→+∞[1 − 𝑒−|𝑦−ℎ|] = 1
limℎ→−∞[1 − 𝑒−|𝑦−ℎ|] = 1

But |𝑦 − ℎ| is not differentiable.



Discussion Question

Which of these could be 𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦)?

a) 𝑒−(𝑦−ℎ)2

b) 1 − 𝑒−(𝑦−ℎ)2

c) 1 − (𝑦 − ℎ)2

d) 1 − 𝑒−|𝑦−ℎ|

Answer: B.
limℎ→+∞[1 − 𝑒−(𝑦−ℎ)

2] = 1
limℎ→−∞[1 − 𝑒−(𝑦−ℎ)

2] = 1
𝐿𝑢𝑐𝑠𝑑(𝑦, 𝑦) = 0



Adding a scale parameter

▶ Problem: 𝐿𝑢𝑐𝑠𝑑 has a fixed scale. This won’t work for all
datasets.
▶ If we’re predicting temperature, and we’re off by 100
degrees, that’s bad.

▶ If we’re predicting salaries, and we’re off by 100
dollars, that’s pretty good.

▶ What we consider to be an outlier depends on the
scale of the data.

▶ Fix: add a scale parameter, 𝜎:

𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1 − 𝑒−(𝑦−ℎ)
2/𝜎2



Adding a scale parameter

𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1 − 𝑒−(𝑦−ℎ)
2/𝜎2

Let’s check:
limℎ→+∞𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1
limℎ→−∞𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1

𝐿𝑢𝑐𝑠𝑑(𝑦, 𝑦) = 0



Empirical risk minimization

▶ We have salaries 𝑦1, 𝑦2, ..., 𝑦𝑛.

▶ To find prediction, ERM says to minimize the average loss:

𝑅𝑢𝑐𝑠𝑑(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦𝑖)

= 1𝑛
𝑛
∑
𝑖=1
[1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]



Let’s plot 𝑅𝑢𝑐𝑠𝑑
▶ Recall:

𝑅𝑢𝑐𝑠𝑑(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
[1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]

▶ Once we have data 𝑦1, 𝑦2, ..., 𝑦𝑛 and a scale 𝜎, we can plot
𝑅𝑢𝑐𝑠𝑑(ℎ).

▶ We’ll use full the StackOverflow dataset (𝑛 = 1121).

▶ Let’s try several scales, 𝜎.



Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)
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Why when 𝜎 large, we see this parabol shape again like for
𝑅𝑠𝑞(ℎ)?



Minimizing 𝑅𝑢𝑐𝑠𝑑
▶ To find the best prediction, we find ℎ∗ minimizing 𝑅𝑢𝑐𝑠𝑑(ℎ).

▶ 𝑅𝑢𝑐𝑠𝑑(ℎ) is differentiable.

▶ To minimize: take derivative, set to zero, solve.



Step 1: Taking the derivative

𝑑𝑅𝑢𝑐𝑠𝑑
𝑑ℎ = 𝑑

𝑑ℎ (
1
𝑛

𝑛
∑
𝑖=1
[1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2])

⇔
𝑑𝑅𝑢𝑐𝑠𝑑
𝑑ℎ = 1𝑛

𝑛
∑
𝑖=1

𝑑
𝑑ℎ [1 − 𝑒

−(𝑦𝑖−ℎ)2/𝜎2] = − 1𝑛
𝑛
∑
𝑖=1

𝑑
𝑑ℎ [𝑒

−(𝑦𝑖−ℎ)2/𝜎2]

⇔
𝑑𝑅𝑢𝑐𝑠𝑑
𝑑ℎ = −1𝑛

𝑛
∑
𝑖=1
𝑒−(𝑦𝑖−ℎ)2/𝜎2 𝑑𝑑ℎ[−(𝑦𝑖 − ℎ)

2/𝜎2]

⇔
𝑑𝑅𝑢𝑐𝑠𝑑
𝑑ℎ = 1

𝑛𝜎2
𝑛
∑
𝑖=1
𝑒−(𝑦𝑖−ℎ)2/𝜎2 𝑑𝑑ℎ[(𝑦𝑖 − ℎ)

2]

⇔
𝑑𝑅𝑢𝑐𝑠𝑑
𝑑ℎ = 2

𝑛𝜎2
𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) ⋅ 𝑒−(𝑦𝑖−ℎ)

2/𝜎2
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𝑛
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Step 2: Setting to zero and solving

▶ We found:

𝑑
𝑑ℎ(ℎ) =

2
𝑛𝜎2

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)

2/𝜎2

▶ Now we just set to zero and solve for ℎ:

0 = 2
𝑛𝜎2

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)

2/𝜎2

▶ We can calculate derivative, but we can’t solve for ℎ; we’re
stuck again.

▶ Now what???

Iterative algorithm: Gradient Descent
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Gradient descent



The general problem

▶ Given: a differentiable function 𝑅(ℎ).

▶ Goal: find the input ℎ∗ that minimizes 𝑅(ℎ).



Meaning of the derivative

▶ We’re trying to minimize a differentiable function 𝑅(ℎ). Is
calculating the derivative helpful?

▶ 𝑑𝑅
𝑑ℎ (ℎ) is a function; it gives the slope at ℎ.



Key idea behind gradient descent

▶ If the slope of 𝑅 at ℎ is positive then moving to the left
decreases the value of 𝑅.

▶ i.e., we should decrease ℎ.



Key idea behind gradient descent

▶ If the slope of 𝑅 at ℎ is negative then moving to the right
decreases the value of 𝑅.

▶ i.e., we should increase ℎ.



Key idea behind gradient descent

▶ Pick a starting place, ℎ0. Where do we go next?

▶ Slope at ℎ0 negative? Then increase ℎ0.

▶ Slope at ℎ0 positive? Then decrease ℎ0.

▶ This will work:
ℎ1 = ℎ0 −

𝑑𝑅
𝑑ℎ (ℎ0)



Gradient Descent
▶ Pick 𝛼 to be a positive number. It is the learning rate, also
known as the step size.

▶ Pick a starting prediction, ℎ0.

▶ On step 𝑖, perform update ℎ𝑖 = ℎ𝑖−1 − 𝛼 ⋅
𝑑𝑅
𝑑ℎ (ℎ𝑖−1)

▶ Repeat until convergence (when ℎ doesn’t change much).



You will not be responsible for implementing gradient descent
in this class, but here’s an implementation in Python if you’re
curious:

def gradient_descent(derivative, h, alpha, tol=1e-12):
”””Minimize using gradient descent.”””
while True:

h_next = h - alpha * derivative(h)
if abs(h_next - h) < tol:

break
h = h_next

return h



Example: Minimizing mean squared error

▶ Recall the mean squared error and its derivative:

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)2

𝑑𝑅sq
𝑑ℎ (ℎ) = 2𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)

Discussion Question

Let 𝑦1 = −4, 𝑦2 = −2, 𝑦3 = 2, 𝑦4 = 4. Pick ℎ0 = 4
and 𝛼 = 1/4. What is ℎ1?

a) -1
b) 0
c) 1
d) 2



Solution

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)2

𝑑𝑅sq
𝑑ℎ (ℎ) = 2𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)

Data values are −4, −2, 2, 4. Pick ℎ0 = 4 and 𝛼 = 1/4. Find ℎ1.

We have:

𝑑𝑅sq
𝑑ℎ (4) = 24[(4− (−4)) + (4− (−2)) + (4−2)+ (4−4)] =

1
2(8+6+2) = 8

Updating step:

ℎ1 = ℎ0 − 𝛼
𝑑𝑅sq
𝑑ℎ (ℎ0) = 4 −

1
4 ⋅ 8 = 2

It looks correct, because we move closer to the mean (that is
0).
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Summary



Summary
▶ Different loss functions lead to empirical risk functions
that are minimized at various measures of center.

▶ The minimum values of these empirical risk functions are
various measures of spread.

▶ We came up with a more complicated loss function, 𝐿𝑢𝑐𝑠𝑑 ,
that treats all outliers equally.
▶ We weren’t able to minimize its empirical risk 𝑅𝑢𝑐𝑠𝑑
by hand.

▶ We invented gradient descent, which repeatedly updates
our prediction by moving in the opposite direction of the
derivative.

▶ Next Time: We’ll look at gradient descent in action.


