Lecture 4 - Spread, Other Loss Functions, Gradient Descent

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Announcements

- Look at the readings linked on the course website!
- First Discussion: Monday, October 3rd 2022

First Homework Release: Friday September 30th 2022
First Groupwork Release: Thursday September 29th 2022
Groupwork Relsease Day: Thursday afternoon Groupwork Submission Day: Monday midnight Homework Release Day: Friday after lecture Homework Submission Day: Friday before

- See dsc40a.com/calendar for the Office Hours schedule.

Agenda

- Recap of empirical risk minimization.
- Center and spread.
- A new loss function.
- Gradient descent.

Recap of empirical risk minimization

Empirical risk minimization

- Goal: Given a dataset $y_{1}, y_{2}, \ldots, y_{n}$, determine the best prediction h^{*}.
- Strategy:

1. Choose a loss function, $L(h, y)$, that measures how far any particular prediction h is from the "right answer" y.
2. Minimize empirical risk (also known as average loss) over the entire dataset. The value(s) of h that minimize empirical risk are the resulting "best predictions".

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n} L\left(h, y_{i}\right)
$$

Absolute loss and squared loss

- General form of empirical risk:

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n} L\left(h, y_{i}\right)
$$

- Absolute loss: $L_{\text {abs }}(h, y)=|y-h|$.
- Empirical risk: $R_{\text {abs }}(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|$. Also called "mean absolute error".
- Minimized by $h^{*}=\operatorname{Median}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
- Squared loss: $L_{\text {sq }}(h, y)=(y-h)^{2}$.
- Empirical risk: $R_{\text {sq }}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}$. Also called "mean squared error".
- Minimized by $h^{*}=\operatorname{Mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Discussion Question

Consider a dataset $y_{1}, y_{2}, \ldots, y_{n}$. Recall,

$$
\begin{aligned}
& R_{a b s}(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right| \\
& R_{s q}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}
\end{aligned}
$$

Is it true that, for any $h,\left[R_{a b s}(h)\right]^{2}=R_{\text {sq }}(h)$?
a) True
b) False

Discussion Question

Consider a dataset $y_{1}, y_{2}, \ldots, y_{n}$. Recall,

$$
\begin{aligned}
& R_{a b s}(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right| \\
& R_{s q}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}
\end{aligned}
$$

Is it true that, for any $h,\left[R_{a b s}(h)\right]^{2}=R_{s q}(h)$?
a) True
b) False

Answer: False. But why?

Absolute and square loss

Cauchy-Schwarz (Bunyakovsky)'s inequality:

$$
\left(a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}\right)
$$

or in summation form:

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

or in vector with inner product \& norm form:

$$
\langle\underline{a}, \underline{b}\rangle \leq\|\underline{a}\| \cdot\|\underline{b}\|
$$

where $\underline{a}=\left(a_{1}, \ldots, a_{n}\right)^{T}$ and $\underline{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$.

Absolute and square loss

Keep in mind that:

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

We have:

$$
\left[R_{a b s}(h)\right]^{2}=\left(\sum_{i=1}^{n} \frac{1}{n}\left|y_{i}-h\right|\right)^{2} \leq\left(\sum_{i=1}^{n} \frac{1}{n^{2}}\right)\left(\sum_{i=1}^{n}\left(y_{i}-h\right)^{2}\right)
$$

The right hand side is:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}=R_{s q}(h)
$$

Therefore:

$$
\left[R_{a b s}(h)\right]^{2} \leq R_{s q}(h)
$$

Center and spread

What does it mean?

- General form of empirical risk:

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n} L\left(h, y_{i}\right)
$$

- The input h^{*} that minimizes $R(h)$ is some measure of the center of the data set.
- e.g. median, mean, mode.
- The minimum output $R\left(h^{*}\right)$ represents some measure of the spread, or variation, in the data set.

Absolute loss

- The empirical risk for the absolute loss is

$$
R_{a b s}(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|
$$

- $R_{\text {abs }}(h)$ is minimized at $h^{*}=\operatorname{Median}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
- Therefore, the minimum value of $R_{a b s}(h)$ is

$$
\begin{aligned}
R_{a b s}\left(h^{*}\right) & =R_{a b s}\left(\operatorname{Median}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-\operatorname{Median}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right| .
\end{aligned}
$$

Mean absolute deviation from the median

- The minimium value of $R_{a b s}(h)$ is the mean absolute deviation from the median.

$$
\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-\operatorname{Median}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right|
$$

- It measures how far each data point is from the median, on average.

Discussion Question

For the data set $2,3,3,4$, what is the mean absolute deviation from the median?
a) 0
b) $\frac{1}{2}$
c) 1
d) 2

Mean absolute deviation from the median

- The minimium value of $R_{a b s}(h)$ is the mean absolute deviation from the median.

$$
\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-\operatorname{Median}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right|
$$

- It measures how far each data point is from the median, on average.

Discussion Question

For the data set $2,3,3,4$, what is the mean absolute deviation from the median?
a) 0
b) $\frac{1}{2}$
c) 1
d) 2

Answer: B.

Squared loss

- The empirical risk for the squared loss is

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}
$$

$\Rightarrow R_{\mathrm{sq}}(h)$ is minimized at $h^{*}=\operatorname{Mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
\Rightarrow Therefore, the minimum value of $R_{\mathrm{sq}}(h)$ is

$$
\begin{aligned}
R_{\mathrm{sq}}\left(h^{*}\right) & =R_{\mathrm{sq}}\left(\operatorname{Mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\operatorname{Mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)^{2} .
\end{aligned}
$$

Variance

- The minimium value of $R_{\text {sq }}(h)$ is the mean squared deviation from the mean, more commonly known as the variance.

$$
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\operatorname{Mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)^{2}
$$

- It measures the squared distance of each data point from the mean, on average.
- Its square root is called the standard deviation.

Variance

0-1 loss

- The empirical risk for the 0-1 loss is

$$
R_{0,1}(h)=\frac{1}{n} \sum_{i=1}^{n} \begin{cases}0, & \text { if } h=y_{i} \\ 1, & \text { if } h \neq y_{i}\end{cases}
$$

\Rightarrow This is the proportion (between 0 and 1) of data points not equal to h.
$\Rightarrow R_{0,1}(h)$ is minimized at $h^{*}=\operatorname{Mode}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
\Rightarrow Therefore, $R_{0,1}\left(h^{*}\right)$ is the proportion of data points not equal to the mode.

A poor way to measure spread

- The minimium value of $R_{0,1}(h)$ is the proportion of data points not equal to the mode.
- A higher value means less of the data is clustered at the mode.
- Just as the mode is a very simplistic way to measure the center of the data, this is a very crude way to measure spread.

Summary of center and spread

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- The minimum values of these risk runctions are various measures of spread.
- There are many different ways to measure both center and spread. These are sometimes called descriptive statistics.

A new loss function

Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
\Rightarrow Consider y to be some fixed value. Plot $L_{a b s}(h, y)=|y-h|$:

Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{\text {sq }}(h, y)=(y-h)^{2}$:

Discussion Question

Suppose L considers all outliers to be equally as bad. What would it look like far away from y ?
a) flat
b) rapidly decreasing
c) rapidly increasing

Discussion Question

Suppose L considers all outliers to be equally as bad. What would it look like far away from y ?
a) flat
b) rapidly decreasing
c) rapidly increasing

Answer: C.

A very insensitive loss

- We'll call this loss $L_{\text {ucsd }}$ because it doesn't have a name. We want:

$$
\begin{aligned}
& \lim _{h \rightarrow+\infty} L(h, y)=\text { constant }<+\infty \\
& \lim _{h \rightarrow-\infty} L(h, y)=\text { constant }<+\infty
\end{aligned}
$$

Discussion Question

Which of these could be $L_{\text {ucsd }}(h, y)$?
a) $e^{-(y-h)^{2}}$
b) $1-e^{-(y-h)^{2}}$
c) $1-(y-h)^{2}$
d) $1-e^{-|y-h|}$

Discussion Question

Which of these could be $L_{u c s d}(h, y)$?
a) $e^{-(y-h)^{2}}$
b) $1-e^{-(y-h)^{2}}$
c) $1-(y-h)^{2}$
d) $1-e^{-|y-h|}$

Why to reject A?

Discussion Question

Which of these could be $L_{u c s d}(h, y)$?
a) $e^{-(y-h)^{2}}$
b) $1-e^{-(y-h)^{2}}$
c) $1-(y-h)^{2}$
d) $1-e^{-|y-h|}$

Why to reject A?

$$
\lim _{h \rightarrow+\infty} e^{-(y-h)^{2}}=0
$$

$h \gg y$ is clearly wrong but the loss says it is good.

Discussion Question

Which of these could be $L_{u c s d}(h, y)$?
a) $e^{-(y-h)^{2}}$
b) $1-e^{-(y-h)^{2}}$
c) $1-(y-h)^{2}$
d) $1-e^{-|y-h|}$

Why to reject C?

Discussion Question

Which of these could be $L_{\text {ucsd }}(h, y)$?
a) $e^{-(y-h)^{2}}$
b) $1-e^{-(y-h)^{2}}$
c) $1-(y-h)^{2}$
d) $1-e^{-|y-h|}$

Why to reject C?

$$
\lim _{h \rightarrow+\infty}\left[1-(y-h)^{2}\right]=-\infty
$$

The loss should never be negative.

Discussion Question

Which of these could be $L_{\text {ucsd }}(h, y)$?
a) $e^{-(y-h)^{2}}$
b) $1-e^{-(y-h)^{2}}$
c) $1-(y-h)^{2}$
d) $1-e^{-|y-h|}$

D is quite okay:

$$
\begin{aligned}
& \lim _{h \rightarrow+\infty}\left[1-e^{-|y-h|}\right]=1 \\
& \lim _{h \rightarrow-\infty}\left[1-e^{-|y-h|}\right]=1
\end{aligned}
$$

But $|y-h|$ is not differentiable.

Discussion Question

Which of these could be $L_{\text {ucsd }}(h, y)$?
a) $e^{-(y-h)^{2}}$
b) $1-e^{-(y-h)^{2}}$
c) $1-(y-h)^{2}$
d) $1-e^{-|y-h|}$

Answer: B.

$$
\begin{gathered}
\lim _{h \rightarrow+\infty}\left[1-e^{-(y-h)^{2}}\right]=1 \\
\lim _{h \rightarrow-\infty}\left[1-e^{-(y-h)^{2}}\right]=1 \\
L_{u c s d}(y, y)=0
\end{gathered}
$$

Adding a scale parameter

- Problem: $L_{\text {ucsd }}$ has a fixed scale. This won't work for all datasets.
- If we're predicting temperature, and we're off by 100 degrees, that's bad.
- If we're predicting salaries, and we're off by 100 dollars, that's pretty good.
- What we consider to be an outlier depends on the scale of the data.
- Fix: add a scale parameter, σ :

$$
L_{u c s d}(h, y)=1-e^{-(y-h)^{2} / \sigma^{2}}
$$

Adding a scale parameter

$$
L_{u c s d}(h, y)=1-e^{-(y-h)^{2} / \sigma^{2}}
$$

Let's check:

$$
\begin{gathered}
\lim _{h \rightarrow+\infty} L_{\text {ucsd }}(h, y)=1 \\
\lim _{h \rightarrow-\infty} L_{\text {ucsd }}(h, y)=1 \\
L_{u c s d}(y, y)=0
\end{gathered}
$$

Empirical risk minimization

\Rightarrow We have salaries $y_{1}, y_{2}, \ldots, y_{n}$.

- To find prediction, ERM says to minimize the average loss:

$$
\begin{aligned}
R_{u c s d}(h) & =\frac{1}{n} \sum_{i=1}^{n} L_{u c s d}\left(h, y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]
\end{aligned}
$$

Let's plot $R_{\text {ucsd }}$

- Recall:

$$
R_{u c s d}(h)=\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]
$$

\Rightarrow Once we have data $y_{1}, y_{2}, \ldots, y_{n}$ and a scale σ, we can plot $R_{\text {ucsd }}(h)$.

- We'll use full the StackOverflow dataset ($n=1121$).
- Let's try several scales, σ.

Plot of $R_{\text {ucsd }}(h)$

Plot of $R_{\text {ucsd }}(h)$

$$
\sigma=32000
$$

Why when σ large, we see this parabol shape again like for $R_{\text {sq }}(h)$?

Minimizing $R_{\text {ucsd }}$

\Rightarrow To find the best prediction, we find h^{*} minimizing $R_{u c s d}(h)$.
$\Rightarrow R_{\text {ucsd }}(h)$ is differentiable.

- To minimize: take derivative, set to zero, solve.

Step 1: Taking the derivative

$$
\frac{d R_{u c s d}}{d h}=\frac{d}{d h}\left(\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]\right)
$$

Step 1: Taking the derivative

$$
\begin{array}{r}
\frac{d R_{u c s d}}{d h}=\frac{d}{d h}\left(\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]\right) \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]=
\end{array}
$$

Step 1: Taking the derivative

$$
\begin{gathered}
\frac{d R_{u c s d}}{d h}=\frac{d}{d h}\left(\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]\right) \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]=-\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]
\end{gathered}
$$

Step 1: Taking the derivative

$$
\begin{gathered}
\frac{d R_{u s s d}}{d h}=\frac{d}{d h}\left(\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]\right) \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]=-\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right] \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=-\frac{1}{n} \sum_{i=1}^{n} e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}} \frac{d}{d h}\left[-\left(y_{i}-h\right)^{2} / \sigma^{2}\right]
\end{gathered}
$$

Step 1: Taking the derivative

$$
\begin{gathered}
\frac{d R_{u c s d}}{d h}=\frac{d}{d h}\left(\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{\left.-\left(y_{i}-h\right)^{2} / \sigma^{2}\right]}\right)\right. \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[1-e^{\left.-\left(y_{i}-h\right)^{2} / \sigma^{2}\right]}=-\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[e^{\left.-\left(y_{i}-h\right)^{2} / \sigma^{2}\right]}\right.\right. \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=-\frac{1}{n} \sum_{i=1}^{n} e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}} \frac{d}{d h}\left[-\left(y_{i}-h\right)^{2} / \sigma^{2}\right] \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=\frac{1}{n \sigma^{2}} \sum_{i=1}^{n} e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}} \frac{d}{d h}\left[\left(y_{i}-h\right)^{2}\right]
\end{gathered}
$$

Step 1: Taking the derivative

$$
\begin{gathered}
\frac{d R_{u c s d}}{d h}=\frac{d}{d h}\left(\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]\right) \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]=-\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left[e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right] \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=-\frac{1}{n} \sum_{i=1}^{n} e^{-\left(y_{i}-h h^{2} / \sigma^{2}\right.} \frac{d}{d h}\left[-\left(y_{i}-h\right)^{2} / \sigma^{2}\right] \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=\frac{1}{n \sigma^{2}} \sum_{i=1}^{n} e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}} \frac{d}{d h}\left[\left(y_{i}-h\right)^{2}\right] \\
\Leftrightarrow \frac{d R_{u c s d}}{d h}=\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}
\end{gathered}
$$

Step 2: Setting to zero and solving

- We found:

$$
\frac{d}{d h}(h)=\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(h-y_{i}\right)^{2} / \sigma^{2}}
$$

- Now we just set to zero and solve for h :

$$
0=\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(h-y_{i}\right)^{2} / \sigma^{2}}
$$

- We can calculate derivative, but we can't solve for h; we're stuck again.
- Now what???

Step 2: Setting to zero and solving

- We found:

$$
\frac{d}{d h}(h)=\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(h-y_{i}\right)^{2} / \sigma^{2}}
$$

- Now we just set to zero and solve for h :

$$
0=\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(h-y_{i}\right)^{2} / \sigma^{2}}
$$

- We can calculate derivative, but we can't solve for h; we're stuck again.
- Now what??? Iterative algorithm: Gradient Descent

Gradient descent

The general problem

- Given: a differentiable function $R(h)$.
- Goal: find the input h^{*} that minimizes $R(h)$.

Meaning of the derivative

- We're trying to minimize a differentiable function $R(h)$. Is calculating the derivative helpful?
$\frac{d R}{d h}(h)$ is a function; it gives the slope at h.

Key idea behind gradient descent

- If the slope of R at h is positive then moving to the left decreases the value of R.
- i.e., we should decrease h.

Key idea behind gradient descent

\Rightarrow If the slope of R at h is negative then moving to the right decreases the value of R.

- i.e., we should increase h.

Key idea behind gradient descent

- Pick a starting place, h_{0}. Where do we go next?
\Rightarrow Slope at h_{0} negative? Then increase h_{0}.

Slope at h_{0} positive? Then decrease h_{0}.

This will work:

$$
h_{1}=h_{0}-\frac{d R}{d h}\left(h_{0}\right)
$$

Gradient Descent

- Pick α to be a positive number. It is the learning rate, also known as the step size.
- Pick a starting prediction, h_{0}.
- On step i, perform update $h_{i}=h_{i-1}-\alpha \cdot \frac{d R}{d h}\left(h_{i-1}\right)$
- Repeat until convergence (when h doesn't change much).

You will not be responsible for implementing gradient descent in this class, but here's an implementation in Python if you're curious:

```
def gradient_descent(derivative, h, alpha, tol=1e-12):
    """Minimize using gradient descent."""
    while True:
        h_next = h - alpha * derivative(h)
        if abs(h_next - h) < tol:
        break
        h = h_next
    return h
```


Example: Minimizing mean squared error

- Recall the mean squared error and its derivative:

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)^{2} \quad \frac{d R_{\mathrm{sq}}}{d h}(h)=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)
$$

Discussion Question

Let $\quad y_{1}=-4, \quad y_{2}=-2, y_{3}=2, y_{4}=4$. Pick $h_{0}=4$ and $\alpha=1 / 4$. What is h_{1} ?
a) -1
b) 0
c) 1
d) 2

Solution

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)^{2} \quad \frac{d R_{\mathrm{sq}}}{d h}(h)=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)
$$

Data values are $-4,-2,2,4$. Pick $h_{0}=4$ and $\alpha=1 / 4$. Find h_{1}.

Solution

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)^{2} \quad \frac{d R_{\mathrm{sq}}}{d h}(h)=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)
$$

Data values are $-4,-2,2,4$. Pick $h_{0}=4$ and $\alpha=1 / 4$. Find h_{1}. We have:

$$
\frac{d R_{\mathrm{sq}}}{d h}(4)=\frac{2}{4}[(4-(-4))+(4-(-2))+(4-2)+(4-4)]=\frac{1}{2}(8+6+2)=8
$$

Solution

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)^{2} \quad \frac{d R_{\mathrm{sq}}}{d h}(h)=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)
$$

Data values are $-4,-2,2,4$. Pick $h_{0}=4$ and $\alpha=1 / 4$. Find h_{1}. We have:
$\frac{d R_{\mathrm{sq}}}{d h}(4)=\frac{2}{4}[(4-(-4))+(4-(-2))+(4-2)+(4-4)]=\frac{1}{2}(8+6+2)=8$
Updating step:

$$
h_{1}=h_{0}-\alpha \frac{d R_{\text {sq }}}{d h}\left(h_{0}\right)=4-\frac{1}{4} \cdot 8=2
$$

It looks correct, because we move closer to the mean (that is $0)$.

Summary

Summary

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- The minimum values of these empirical risk functions are various measures of spread.
- We came up with a more complicated loss function, $L_{\text {ucsd }}$, that treats all outliers equally.
- We weren't able to minimize its empirical risk $R_{\text {ucsd }}$ by hand.
- We invented gradient descent, which repeatedly updates our prediction by moving in the opposite direction of the derivative.
- Next Time: We'll look at gradient descent in action.

