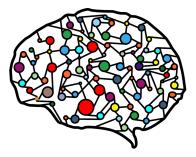
Lecture 4 – Spread, Other Loss Functions, Gradient Descent



DSC 40A, Fall 2022 @ UC San Diego Dr. Truong Son Hy, with help from many others

Announcements

- Look at the readings linked on the course website!
- First Discussion: Monday, October 3rd 2022
 First Homework Release: Friday September 30th 2022
 First Groupwork Release: Thursday September 29th 2022
 Groupwork Relsease Day: Thursday afternoon
 Groupwork Submission Day: Monday midnight
 Homework Release Day: Friday after lecture
 Homework Submission Day: Friday before
 - See dsc40a.com/calendar for the Office Hours schedule.

Agenda

- Recap of empirical risk minimization.
- Center and spread.
- ► A new loss function.
- Gradient descent.

Recap of empirical risk minimization

Empirical risk minimization

- ► Goal: Given a dataset y₁, y₂, ..., y_n, determine the best prediction h*.
- Strategy:
 - Choose a loss function, L(h, y), that measures how far any particular prediction h is from the "right answer" y.
 - 2. Minimize **empirical risk** (also known as average loss) over the entire dataset. The value(s) of *h* that minimize empirical risk are the resulting "best predictions".

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

Absolute loss and squared loss

General form of empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- Absolute loss: $L_{abs}(h, y) = |y h|$.
 - Empirical risk: $R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$. Also called "mean absolute error".

• Minimized by $h^* = \text{Median}(y_1, y_2, ..., y_n)$.

- Squared loss: $L_{sq}(h, y) = (y h)^2$.
 - Empirical risk: $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$. Also called "mean squared error".
 - Minimized by $h^* = \text{Mean}(y_1, y_2, ..., y_n)$.

Consider a dataset y₁, y₂, ..., y_n. Recall,

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Is it true that, for any *h*, $[R_{abs}(h)]^2 = R_{sq}(h)$? a) True b) False

Consider a dataset y₁, y₂, ..., y_n. Recall,

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Is it true that, for any *h*, $[R_{abs}(h)]^2 = R_{sq}(h)$? a) True b) False

Answer: False. But why?

Absolute and square loss

Cauchy-Schwarz (Bunyakovsky)'s inequality:

$$(a_1b_1 + a_2b_2 + \ldots + a_nb_n)^2 \leq (a_1^2 + a_2^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + \ldots + b_n^2)$$

or in summation form:

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

or in vector with inner product & norm form:

$$\langle \underline{a}, \underline{b} \rangle \leq ||\underline{a}|| \cdot ||\underline{b}||$$

where $\underline{a} = (a_1, ..., a_n)^T$ and $\underline{b} = (b_1, ..., b_n)^T$.

Absolute and square loss

Keep in mind that:

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

We have:

$$[R_{abs}(h)]^2 = \left(\sum_{i=1}^n \frac{1}{n} |y_i - h|\right)^2 \leq \left(\sum_{i=1}^n \frac{1}{n^2}\right) \left(\sum_{i=1}^n (y_i - h)^2\right)$$

The right hand side is:

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-h)^{2}=R_{sq}(h)$$

Therefore:

 $[R_{abs}(h)]^2 \le R_{sq}(h)$

Center and spread

What does it mean?

General form of empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- The input h* that minimizes R(h) is some measure of the center of the data set.
 - e.g. median, mean, mode.
- The minimum output R(h*) represents some measure of the spread, or variation, in the data set.

Absolute loss

The empirical risk for the absolute loss is

$$R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

 \triangleright $R_{abs}(h)$ is minimized at $h^* = Median(y_1, y_2, ..., y_n)$.

Therefore, the minimum value of R_{abs}(h) is

$$\begin{aligned} R_{abs}(h^*) &= R_{abs}(\text{Median}(y_1, y_2, \dots, y_n)) \\ &= \frac{1}{n} \sum_{i=1}^n |y_i - \text{Median}(y_1, y_2, \dots, y_n)|. \end{aligned}$$

Mean absolute deviation from the median

The minimium value of R_{abs}(h) is the mean absolute deviation from the median.

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - Median(y_1, y_2, ..., y_n)|$$

It measures how far each data point is from the median, on average.

Discussion Question

For the data set 2,3,3,4, what is the mean absolute deviation from the median?

a) 0 b)
$$\frac{1}{2}$$
 c) 1 d) 2

Mean absolute deviation from the median

The minimium value of R_{abs}(h) is the mean absolute deviation from the median.

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - Median(y_1, y_2, ..., y_n)|$$

It measures how far each data point is from the median, on average.

Discussion QuestionFor the data set 2,3,3,4, what is the mean absolute
deviation from the median?a) 0b) $\frac{1}{2}$ c) 1d) 2

Answer: B.

Squared loss

The empirical risk for the squared loss is

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

$$\triangleright R_{sq}(h) \text{ is minimized at } h^* = Mean(y_1, y_2, \dots, y_n).$$

• Therefore, the minimum value of $R_{sq}(h)$ is

$$R_{sq}(h^*) = R_{sq}(Mean(y_1, y_2, ..., y_n))$$

= $\frac{1}{n} \sum_{i=1}^{n} (y_i - Mean(y_1, y_2, ..., y_n))^2.$

Variance

The minimium value of R_{sq}(h) is the mean squared deviation from the mean, more commonly known as the variance.

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \text{Mean}(y_1, y_2, \dots, y_n))^2$$

- It measures the squared distance of each data point from the mean, on average.
- Its square root is called the standard deviation.

0-1 loss

The empirical risk for the 0-1 loss is

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0, & \text{if } h = y_i \\ 1, & \text{if } h \neq y_i \end{cases}$$

- This is the proportion (between 0 and 1) of data points not equal to h.
- \triangleright $R_{0,1}(h)$ is minimized at $h^* = \text{Mode}(y_1, y_2, \dots, y_n)$.
- ► Therefore, $R_{0,1}(h^*)$ is the proportion of data points not equal to the mode.

A poor way to measure spread

- The minimium value of $R_{0,1}(h)$ is the proportion of data points not equal to the mode.
- A higher value means less of the data is clustered at the mode.
- Just as the mode is a very simplistic way to measure the center of the data, this is a very crude way to measure spread.

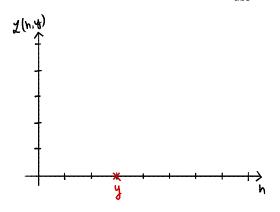
Summary of center and spread

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- The minimum values of these risk runctions are various measures of spread.

A new loss function

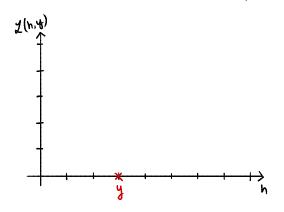
Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{abs}(h, y) = |y h|$:



Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{sq}(h, y) = (y h)^2$:



Suppose *L* considers all outliers to be equally as bad. What would it look like far away from *y*?

a) flat

- b) rapidly decreasing
- c) rapidly increasing

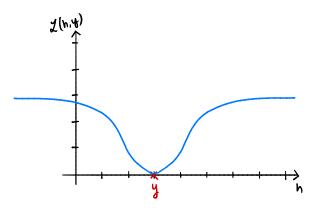
Suppose *L* considers all outliers to be equally as bad. What would it look like far away from *y*?

a) flat

- b) rapidly decreasing
- c) rapidly increasing

Answer: A - Flat.

A very insensitive loss



▶ We'll call this loss L_{ucsd} because it doesn't have a name. We want:

$$\lim_{h \to +\infty} L(h, y) = \text{constant} < +\infty$$
$$\lim_{h \to -\infty} L(h, y) = \text{constant} < +\infty$$

Which of these could be $L_{ucsd}(h, y)$?

a)
$$e^{-(y-h)^2}$$

b) $1 - e^{-(y-h)^2}$
c) $1 - (y - h)^2$
d) $1 - e^{-|y-h|}$

Which of these could be $L_{ucsd}(h, y)$?

a)
$$e^{-(y-h)^2}$$

b) $1 - e^{-(y-h)^2}$
c) $1 - (y - h)^2$
d) $1 - e^{-|y-h|}$

Why to reject A?

Which of these could be $L_{ucsd}(h, y)$?

a)
$$e^{-(y-h)^2}$$

b) $1 - e^{-(y-h)^2}$
c) $1 - (y - h)^2$
d) $1 - e^{-|y-h|}$

Why to reject A?

$$\lim_{h\to+\infty}e^{-(y-h)^2}=0$$

h >> *y* is clearly wrong but the loss says it is good.

Which of these could be $L_{ucsd}(h, y)$?

a)
$$e^{-(y-h)^2}$$

b) $1 - e^{-(y-h)^2}$
c) $1 - (y - h)^2$
d) $1 - e^{-|y-h|}$

Why to reject C?

Which of these could be $L_{ucsd}(h, y)$?

a)
$$e^{-(y-h)^2}$$

b) $1 - e^{-(y-h)^2}$
c) $1 - (y - h)^2$
d) $1 - e^{-|y-h|}$

Why to reject C?

$$\lim_{h \to +\infty} [1 - (y - h)^2] = -\infty$$

The loss should never be negative.

Which of these could be $L_{ucsd}(h, y)$?

a)
$$e^{-(y-h)^2}$$

b) $1 - e^{-(y-h)^2}$
c) $1 - (y - h)^2$
d) $1 - e^{-|y-h|}$

D is quite okay:

$$\lim_{h \to +\infty} [1 - e^{-|y-h|}] = 1$$
$$\lim_{h \to -\infty} [1 - e^{-|y-h|}] = 1$$

But |y - h| is not differentiable.

Which of these could be $L_{ucsd}(h, y)$?

a)
$$e^{-(y-h)^2}$$

b) $1 - e^{-(y-h)^2}$
c) $1 - (y - h)^2$
d) $1 - e^{-|y-h|}$

Answer: B.

$$\lim_{h \to +\infty} [1 - e^{-(y-h)^2}] = 1$$
$$\lim_{h \to -\infty} [1 - e^{-(y-h)^2}] = 1$$
$$L_{ucsd}(y, y) = 0$$

Adding a scale parameter

- Problem: L_{ucsd} has a fixed scale. This won't work for all datasets.
 - If we're predicting temperature, and we're off by 100 degrees, that's bad.
 - If we're predicting salaries, and we're off by 100 dollars, that's pretty good.
 - What we consider to be an outlier depends on the scale of the data.
- Fix: add a scale parameter, σ :

$$L_{ucsd}(h, y) = 1 - e^{-(y-h)^2/\sigma^2}$$

Adding a scale parameter

$$L_{ucsd}(h, y) = 1 - e^{-(y-h)^2/\sigma^2}$$
$$\lim_{h \to +\infty} L_{ucsd}(h, y) = 1$$
$$\lim_{h \to -\infty} L_{ucsd}(h, y) = 1$$
$$L_{ucsd}(y, y) = 0$$

Let's check:

Empirical risk minimization

• We have salaries $y_1, y_2, ..., y_n$.

▶ To find prediction, ERM says to minimize the average loss:

$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{ucsd}(h, y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

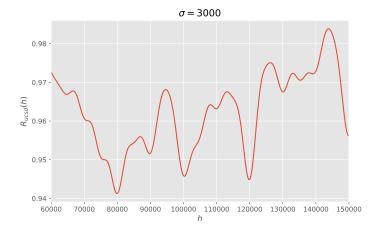
Let's plot R_{ucsd}

Recall:

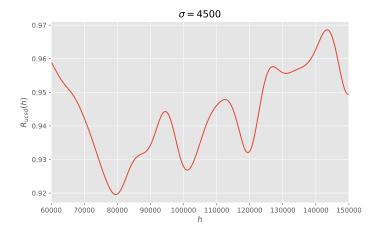
$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

- Once we have data $y_1, y_2, ..., y_n$ and a scale σ , we can plot $R_{ucsd}(h)$.
- ▶ We'll use full the StackOverflow dataset (*n* = 1121).
- Let's try several scales, σ .

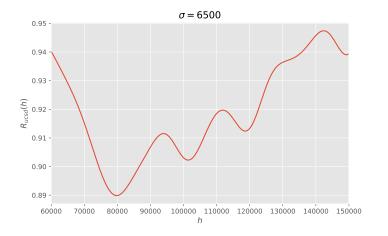
Plot of $R_{ucsd}(h)$



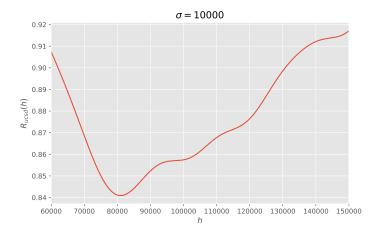
Plot of $R_{ucsd}(h)$

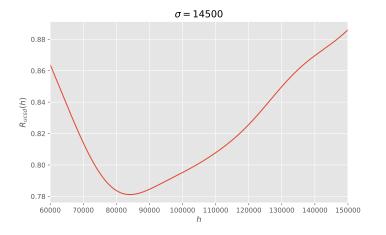


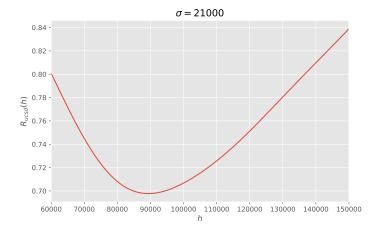
Plot of $R_{ucsd}(h)$

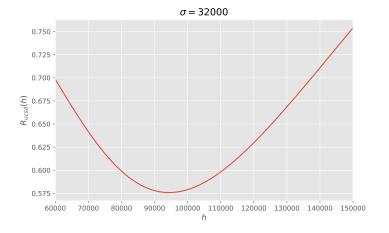


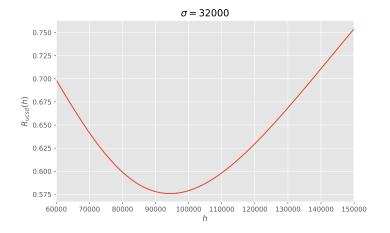
Plot of $R_{ucsd}(h)$











Why when σ large, we see this parabol shape again like for $R_{sq}(h)$?

Minimizing R_{ucsd}

- ► To find the best prediction, we find h^* minimizing $R_{ucsd}(h)$.
- $R_{ucsd}(h)$ is differentiable.
- ► To minimize: take derivative, set to zero, solve.

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] \right)$$

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] \right)$$
$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{dh} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] =$$

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] \right)$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{dh} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] = -\frac{1}{n} \sum_{i=1}^{n} \frac{d}{dh} \left[e^{-(y_i - h)^2 / \sigma^2} \right]$$

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] \right)$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{dh} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] = -\frac{1}{n} \sum_{i=1}^{n} \frac{d}{dh} \left[e^{-(y_i - h)^2 / \sigma^2} \right]$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = -\frac{1}{n} \sum_{i=1}^{n} e^{-(y_i - h)^2 / \sigma^2} \frac{d}{dh} \left[-(y_i - h)^2 / \sigma^2 \right]$$

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] \right)$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{dh} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] = -\frac{1}{n} \sum_{i=1}^{n} \frac{d}{dh} \left[e^{-(y_i - h)^2 / \sigma^2} \right]$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = -\frac{1}{n} \sum_{i=1}^{n} e^{-(y_i - h)^2 / \sigma^2} \frac{d}{dh} \left[-(y_i - h)^2 / \sigma^2 \right]$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = \frac{1}{n\sigma^2} \sum_{i=1}^{n} e^{-(y_i - h)^2 / \sigma^2} \frac{d}{dh} \left[(y_i - h)^2 \right]$$

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] \right)$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{dh} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] = -\frac{1}{n} \sum_{i=1}^{n} \frac{d}{dh} \left[e^{-(y_i - h)^2 / \sigma^2} \right]$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = -\frac{1}{n} \sum_{i=1}^{n} e^{-(y_i - h)^2 / \sigma^2} \frac{d}{dh} \left[-(y_i - h)^2 / \sigma^2 \right]$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = \frac{1}{n\sigma^2} \sum_{i=1}^{n} e^{-(y_i - h)^2 / \sigma^2} \frac{d}{dh} \left[(y_i - h)^2 \right]$$

$$\Leftrightarrow \frac{dR_{ucsd}}{dh} = \frac{1}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(y_i - h)^2 / \sigma^2}$$

Step 2: Setting to zero and solving

We found:

$$\frac{d}{dh}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

Now we just set to zero and solve for *h*:

$$0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

- We can calculate derivative, but we can't solve for h; we're stuck again.
- Now what???

Step 2: Setting to zero and solving

We found:

$$\frac{d}{dh}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

Now we just set to zero and solve for *h*:

$$0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

- We can calculate derivative, but we can't solve for h; we're stuck again.
- Now what??? Iterative algorithm: Gradient Descent

Gradient descent

The general problem

Given: a differentiable function *R*(*h*).

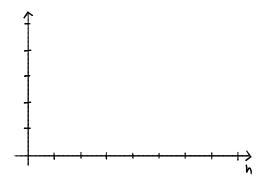
Goal: find the input *h*^{*} that minimizes *R*(*h*).

Meaning of the derivative

- We're trying to minimize a differentiable function R(h). Is calculating the derivative helpful?
- $\frac{dR}{dh}(h)$ is a function; it gives the slope at h.

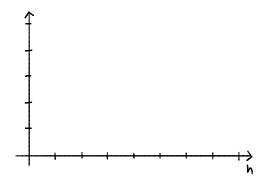
Key idea behind gradient descent

- If the slope of R at h is **positive** then moving to the **left** decreases the value of R.
- ▶ i.e., we should **decrease** *h*.



Key idea behind gradient descent

- If the slope of R at h is negative then moving to the right decreases the value of R.
- ▶ i.e., we should **increase** *h*.



Key idea behind gradient descent

- > Pick a starting place, h_0 . Where do we go next?
- Slope at h_0 negative? Then increase h_0 .
- Slope at h_0 positive? Then decrease h_0 .
- This will work:

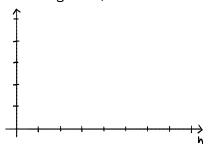
$$h_1 = h_0 - \frac{dR}{dh}(h_0)$$

Gradient Descent

- Pick α to be a positive number. It is the learning rate, also known as the step size.
- Pick a starting prediction, h_0 .

• On step *i*, perform update
$$h_i = h_{i-1} - \alpha \cdot \frac{dR}{dh}(h_{i-1})$$

Repeat until convergence (when h doesn't change much).



You will not be responsible for implementing gradient descent in this class, but here's an implementation in Python if you're curious:

```
def gradient_descent(derivative, h, alpha, tol=1e-12):
    """Minimize using gradient descent."""
    while True:
        h_next = h - alpha * derivative(h)
        if abs(h_next - h) < tol:
            break
        h = h_next
        return h</pre>
```

Example: Minimizing mean squared error

Recall the mean squared error and its derivative:

$$R_{\rm sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2 \qquad \frac{dR_{\rm sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$$

Discussion Question

Let
$$y_1 = -4$$
, $y_2 = -2$, $y_3 = 2$, $y_4 = 4$. Pick $h_0 = 4$
and $\alpha = 1/4$. What is h_1 ?
a) -1
b) 0
c) 1

Solution

$$R_{\rm sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2 \qquad \frac{dR_{\rm sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$$

Data values are -4, -2, 2, 4. Pick $h_0 = 4$ and $\alpha = 1/4$. Find h_1 .

Solution

$$R_{\rm sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2 \qquad \frac{dR_{\rm sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$$

Data values are -4, -2, 2, 4. Pick $h_0 = 4$ and $\alpha = 1/4$. Find h_1 . We have:

$$\frac{dR_{\rm sq}}{dh}(4) = \frac{2}{4} \left[(4 - (-4)) + (4 - (-2)) + (4 - 2) + (4 - 4) \right] = \frac{1}{2} (8 + 6 + 2) = 8$$

Solution

$$R_{\rm sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2 \qquad \frac{dR_{\rm sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$$

Data values are -4, -2, 2, 4. Pick $h_0 = 4$ and $\alpha = 1/4$. Find h_1 . We have:

$$\frac{dR_{\rm sq}}{dh}(4) = \frac{2}{4} \left[(4 - (-4)) + (4 - (-2)) + (4 - 2) + (4 - 4) \right] = \frac{1}{2} (8 + 6 + 2) = 8$$

Updating step:

$$h_1 = h_0 - \alpha \frac{dR_{sq}}{dh}(h_0) = 4 - \frac{1}{4} \cdot 8 = 2$$

It looks correct, because we move closer to the mean (that is 0).

Summary

Summary

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- The minimum values of these empirical risk functions are various measures of spread.
- We came up with a more complicated loss function, L_{ucsd}, that treats all outliers equally.
 - We weren't able to minimize its empirical risk R_{ucsd} by hand.
- We invented gradient descent, which repeatedly updates our prediction by moving in the opposite direction of the derivative.
- Next Time: We'll look at gradient descent in action.