
Lecture 5 – Gradient Descent and Convexity

DSC 40A, Fall 2022 @ UC San Diego
Mahdi Soleymani, with help from many others

Agenda▶ Minimizing UCSD loss.▶ Gradient descent fundamentals.

A new loss function

The recipe
Suppose we’re given a dataset, 𝑦1, 𝑦2, ..., 𝑦𝑛 and want to
determine the best future prediction ℎ∗.
The recipe is as follows:
1. Choose a loss function 𝐿(ℎ, 𝑦) that measures how far our
prediction ℎ is from the “right answer” 𝑦.▶ Absolute loss, 𝐿𝑎𝑏𝑠(ℎ, 𝑦) = |𝑦 − ℎ|.▶ Squared loss, 𝐿𝑠𝑞(ℎ, 𝑦) = (𝑦 − ℎ)2.

2. Find ℎ∗ by minimizing the average of our chosen loss
function over the entire dataset.▶ “Empirical risk” is just another name for average loss.𝑅(ℎ) = 1𝑛 𝑛∑𝑖=1 𝐿(ℎ, 𝑦)

A very insensitive loss▶ Last time, we introduced a new loss function, 𝐿𝑢𝑐𝑠𝑑 , with
the property that it (roughly) penalizes all bad predictions
the same.▶ Under 𝐿𝑢𝑐𝑠𝑑 , a prediction that is wrong by 50 has

approximately the same loss as a prediction that is
wrong by 500.▶ The effect: 𝐿𝑢𝑐𝑠𝑑 is not as sensitive to outliers.

Adding a scale parameter▶ Problem: 𝐿𝑢𝑐𝑠𝑑 has a fixed scale. This won’t work for all
datasets.▶ If we’re predicting temperature, and we’re off by 100

degrees, that’s bad.▶ If we’re predicting salaries, and we’re off by 100
dollars, that’s pretty good.▶ What we consider to be an outlier depends on the
scale of the data.▶ Fix: add a scale parameter, 𝜎:𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1 − 𝑒−(𝑦−ℎ)2/𝜎2

Adding a scale parameter

Empirical risk minimization▶ We have salaries 𝑦1, 𝑦2, ..., 𝑦𝑛.▶ To find prediction, ERM says to minimize the average loss:𝑅𝑢𝑐𝑠𝑑(ℎ) = 1𝑛 𝑛∑𝑖=1 𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦𝑖)= 1𝑛 𝑛∑𝑖=1 [1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]

Let’s plot 𝑅𝑢𝑐𝑠𝑑▶ Recall: 𝑅𝑢𝑐𝑠𝑑(ℎ) = 1𝑛 𝑛∑𝑖=1 [1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]▶ Once we have data 𝑦1, 𝑦2, ..., 𝑦𝑛 and a scale 𝜎, we can plot𝑅𝑢𝑐𝑠𝑑(ℎ).▶ We’ll use full the StackOverflow dataset (𝑛 = 1121).▶ Let’s try several scales, 𝜎.

Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)

Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)

Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)

Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)

Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)

Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)

Plot of 𝑅𝑢𝑐𝑠𝑑(ℎ)

Minimizing 𝑅𝑢𝑐𝑠𝑑▶ To find the best prediction, we find ℎ∗ minimizing 𝑅𝑢𝑐𝑠𝑑(ℎ).▶ 𝑅𝑢𝑐𝑠𝑑(ℎ) is differentiable.▶ To minimize: take derivative, set to zero, solve.

Step 1: Taking the derivative𝑑𝑅𝑢𝑐𝑠𝑑𝑑ℎ = 𝑑𝑑ℎ (1𝑛 𝑛∑𝑖=1 [1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2])

Step 2: Setting to zero and solving▶ We found: 𝑑𝑑ℎ(ℎ) = 2𝑛𝜎2 𝑛∑𝑖=1 (ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)2/𝜎2▶ Now we just set to zero and solve for ℎ:0 = 2𝑛𝜎2 𝑛∑𝑖=1 (ℎ − 𝑦𝑖) ⋅ 𝑒−(ℎ−𝑦𝑖)2/𝜎2▶ We can calculate derivative, but we can’t solve for ℎ; we’re
stuck again.▶ Now what???

𝐿𝑢𝑐𝑠𝑑▶ The formula for 𝐿𝑢𝑐𝑠𝑑 is as follows (no need to memorize):𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1 − 𝑒−(𝑦−ℎ)2/𝜎2▶ The shape (and formula) come from an upside-down
bell curve.▶ 𝐿𝑢𝑐𝑠𝑑 contains a scale parameter, 𝜎.▶ Nothing to do with variance or standard deviation.▶ Accounts for the fact that different datasets have
different thresholds for what counts as an outlier.▶ Think of 𝜎 as a knob that you get to turn – the larger𝜎 is, the more sensitive 𝐿𝑢𝑐𝑠𝑑 is to outliers (and the
more smooth 𝑅𝑢𝑐𝑠𝑑 is).

There’s a problem with 𝑅𝑢𝑐𝑠𝑑▶ The corresponding empirical risk, 𝑅𝑢𝑐𝑠𝑑 , is𝑅𝑢𝑐𝑠𝑑(ℎ) = 1𝑛 𝑛∑𝑖=1 [1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]▶ 𝑅𝑢𝑐𝑠𝑑 is differentiable.▶ Last time, we took the derivative of 𝑅𝑢𝑐𝑠𝑑(ℎ) and set it
equal to 0. 0 = 2𝑛𝜎2 𝑛∑𝑖=1 (ℎ − 𝑦𝑖) ⋅ 𝑒−(𝑦𝑖−ℎ)2/𝜎2▶ There’s no solution to this equation. So now what?

Gradient descent fundamentals

The general problem▶ Given: a differentiable function 𝑅(ℎ).▶ Goal: find the input ℎ∗ that minimizes 𝑅(ℎ).

Meaning of the derivative▶ We’re trying to minimize a differentiable function 𝑅(ℎ). Is
calculating the derivative helpful?▶ 𝑑𝑅𝑑ℎ (ℎ) is a function; it gives the slope at ℎ.

Key idea behind gradient descent▶ If the slope of 𝑅 at ℎ is positive then moving to the left
decreases the value of 𝑅.▶ i.e., we should decrease ℎ.

Key idea behind gradient descent▶ If the slope of 𝑅 at ℎ is negative then moving to the right
decreases the value of 𝑅.▶ i.e., we should increase ℎ.

Key idea behind gradient descent▶ Pick a starting place, ℎ0. Where do we go next?▶ Slope at ℎ0 negative? Then increase ℎ0.▶ Slope at ℎ0 positive? Then decrease ℎ0.▶ This will work: ℎ1 = ℎ0 − 𝑑𝑅𝑑ℎ (ℎ0)

Gradient Descent▶ Pick 𝛼 to be a positive number. It is the learning rate, also
known as the step size.▶ Pick a starting prediction, ℎ0.▶ On step 𝑖, perform update ℎ𝑖 = ℎ𝑖−1 − 𝛼 ⋅ 𝑑𝑅𝑑ℎ (ℎ𝑖−1)▶ Repeat until convergence (when ℎ doesn’t change much).▶ Note: it’s called gradient descent because the “gradient”
is the generalization of the derivative for multivariate
functions.

You will not be responsible for implementing gradient descent
in this class, but here’s an implementation in Python if you’re
curious:

def gradient_descent(derivative, h, alpha, tol=1e-12):
”””Minimize using gradient descent.”””
while True:

h_next = h - alpha * derivative(h)
if abs(h_next - h) < tol:

break
h = h_next

return h

Example: Minimizing mean squared error▶ Recall the mean squared error and its derivative:𝑅sq(ℎ) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − ℎ)2 𝑑𝑅sq𝑑ℎ (ℎ) = 2𝑛 𝑛∑𝑖=1 (ℎ − 𝑦𝑖)
Discussion Question

Let 𝑦1 = −4, 𝑦2 = −2, 𝑦3 = 2, 𝑦4 = 4. Pick ℎ0 = 4
and 𝛼 = 1/4. What is ℎ1?
a) -1
b) 0
c) 1
d) 2
To answer, go to menti.com and enter the code 7933
4859.

Solution

𝑅sq(ℎ) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − ℎ)2 𝑑𝑅sq𝑑ℎ (ℎ) = 2𝑛 𝑛∑𝑖=1 (ℎ − 𝑦𝑖)
Data values are −4, −2, 2, 4. Pick ℎ0 = 4 and 𝛼 = 1/4. Find ℎ1.

