Lecture 5 - Gradient Descent and Convexity

DSC 40A, Fall 2022 @ UC San Diego
Mahdi Soleymani, with help from many others

Agenda

Minimizing UCSD loss.
Gradient descent fundamentals.

A new loss function

The recipe

Suppose we're given a dataset, $y_{1}, y_{2}, \ldots, y_{n}$ and want to determine the best future prediction h^{*}.
The recipe is as follows:

1. Choose a loss function $L(h, y)$ that measures how far our prediction h is from the "right answer" y.
\Rightarrow Absolute loss, $L_{a b s}(h, y)=|y-h|$.
Squared loss, $L_{\text {sq }}(h, y)=(y-h)^{2}$.
2. Find h^{*} by minimizing the average of our chosen loss function over the entire dataset.

- "Empirical risk" is just another name for average loss.

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n} L(h, y)
$$

A very insensitive loss

- Last time, we introduced a new loss function, $L_{u c s d}$, with the property that it (roughly) penalizes all bad predictions the same.
- Under $L_{\text {ucsd }}$, a prediction that is wrong by 50 has approximately the same loss as a prediction that is wrong by 500.

The effect: $L_{\text {ucsd }}$ is not as sensitive to outliers.

Adding a scale parameter

- Problem: $L_{\text {ucsd }}$ has a fixed scale. This won't work for all datasets.
- If we're predicting temperature, and we're off by 100 degrees, that's bad.
- If we're predicting salaries, and we're off by 100 dollars, that's pretty good.
- What we consider to be an outlier depends on the scale of the data.
$>$ Fix: add a scale parameter, σ :
scaler

$$
L_{u c s d}(h, y)=\underline{1-e^{-(y-h)^{2} / \sigma^{2}} \downarrow}
$$

Adding a scale parameter

$$
L_{\text {Jcs }}=1-e\left[\frac{-(y-h)^{2}}{\sigma^{2}}\right]
$$

 small σ

Empirical risk minimization
We have salaries $y_{1}, y_{2}, \ldots, y_{n}$.
To find prediction, ERM says to minimize the average loss:

$$
\begin{aligned}
R_{u c s d}(h) & =\frac{1}{n} \sum_{i=1}^{n} L_{u c s d}\left(h, y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]
\end{aligned}
$$

σ^{2} is not the Variance.

Let's plot $R_{\text {ucsd }}$

- Recall:

$$
R_{u c s d}(h)=\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]
$$

\Rightarrow Once we have data $y_{1}, y_{2}, \ldots, y_{n}$ and a scale σ, we can plot $R_{\text {ucsd }}(h)$.

- We'll use full the StackOverflow dataset ($n=1121$).
- Let's try several scales, σ.

Plot of $R_{u c s d}(h)$

Plot of $R_{\text {ucsd }}(h)$

Minimizing $R_{\text {ucsd }}$
To find the best prediction, we find h^{*} minimizing $R_{\text {ucsd }}(h)$.
$R_{\text {ucsd }}(h)$ is differentiable.
To minimize: take derivative, set to zero, solve.

$$
R_{u C S D}=\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\frac{\left(y_{i}-h\right)^{2}}{\sigma^{2}}}\right]
$$

Step 1: Taking the derivative

$$
\begin{aligned}
& \frac{d R_{u s s d}}{d h}=\frac{d}{d h}\left(\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{\left.-\left(y_{-}-h\right)^{2} / \sigma^{2}\right)}\right)\right. \\
& =\frac{1}{n}\left[\sum_{i=1}^{n} \frac{d}{d h}(1)-\sum_{i=1}^{d h} \frac{d}{d h} e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right. \\
& =\frac{1}{n}\left[\sum_{i=1}^{n} 0-\sum_{i=1}^{n} e^{-\frac{\left(y_{i}-h\right)^{2}}{\sigma^{2}}} \times \frac{-2\left(\widetilde{\left.y_{i}-h\right)}\right.}{\sigma^{2}} \times-1\right] \\
& =\frac{2}{n \sigma^{2}} \sum_{i=1}^{n} e^{-\frac{\left(y_{i}-h\right)^{2}}{\sigma^{2}}}\left(h-y_{i}\right)
\end{aligned}
$$

Step 2: Setting to zero and solving

- We found:

$$
\frac{d}{d h}(h)=\underbrace{\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(h-y_{i}\right)^{2} / \sigma^{2}}}=0
$$

Now we just set to zero and solve for h :

$$
a x^{2}+b x+c=0 \quad 0=\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(h-y_{i}\right)^{2} / \sigma^{2}}
$$

$\Rightarrow x^{*}=-b \pm \sqrt{b^{2}-4 a c}$

- We can calculate derivative, but we can't solve for h; we're stuck again.
- Now what???
- The formula for $L_{\text {ucsd }}$ is as follows (no need to memorize):

$$
L_{u c s d}(h, y)=1-e^{-(y-h)^{2} / \sigma^{2}}
$$

- The shape (and formula) come from an upside-down bell curve.
$\Rightarrow L_{u c s d}$ contains a scale parameter, σ.
- Nothing to do with variance or standard deviation.
- Accounts for the fact that different datasets have different thresholds for what counts as an outlier.
- Think of σ as a knob that you get to turn - the larger σ is, the more sensitive $L_{\text {ucsd }}$ is to outliers (and the more smooth $R_{\text {ucsd }}$ is).

There's a problem with $R_{\text {ucsd }}$

- The corresponding empirical risk, $R_{u c s d}$, is

$$
R_{u c s d}(h)=\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]
$$

$R_{\text {ucsd }}$ is differentiable.

- Last time, we took the derivative of $R_{u c s d}(h)$ and set it equal to 0 .

$$
0=\frac{2}{n \sigma^{2}} \sum_{i=1}^{n}\left(h-y_{i}\right) \cdot e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}
$$

- There's no solution to this equation. So now what?

Gradient descent fundamentals

The general problem

- Given: a differentiable function $R(h)$.
- Goal: find the input h^{*} that minimizes $R(h)$.

Meaning of the derivative

- We're trying to minimize a differentiable function $R(h)$. Is calculating the derivative helpful?
$\frac{d R}{d h}(h)$ is a function; it gives the slope at h.

Key idea behind gradient descent

- If the slope of R at h is positive then moving to the left decreases the value of R.
- i.e., we should decrease h.

Key idea behind gradient descent
If the slope of R at h is negative then moving to the right decreases the value of R.
i.e., we should increase h.

$$
R(h)=\text { Given }
$$

Key idea behind gradient descent
Pick a starting place, h_{0}. Where do we go next?
Slope at h_{0} negative? Then increase h_{0}.
Slope at h_{0} positive? Then decrease h_{0}.
This will work:

$$
h_{1}=h_{0}-\frac{d R}{d h}\left(h_{0}\right)
$$

update equation

Gradient Descent

\Rightarrow Pick α to be a positive number. It is the learning rate, also known as the step size.
random point
\Rightarrow Pick a starting prediction, h_{0}. step size

- On step i, perform update $h_{i}=h_{i-1} \pm \downarrow \cdot \frac{d R}{d h}\left(h_{i-1}\right)$
- Repeat until convergence (when h doesn't change much).
- Note: it's called gradient descent because the "gradient" is the generalization of the derivative for multivariate functions.

You will not be responsible for implementing gradient descent in this class, but here's an implementation in Python if you're curious:
def gradient_descent(derivative, h, alpha, tol=1e-12):
"""Minimize using gradient descent."""
while True:
h_next = h - alpha * derivative(h)
if abs(h_next - h) < tol:
break
h = h_next
return h

Example: Minimizing mean squared error

\Rightarrow Recall the mean squared error and its derivative:

$$
h_{i}=\underset{\substack{h_{i-1}-\alpha \\ \text { Discussion Question }}}{\quad(h)=\frac{d R}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}} \quad \frac{d R_{\mathrm{sq}}}{d h}(h)=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)
$$

Let $\quad y_{1}=-4, \quad y_{2}=-2, \quad y_{3}=2, \quad y_{4}=4$. Pick $h_{0}=4$ and $\alpha=1 / 4$. What is h_{1} ?
a) -1
b) 0

$$
h_{1}=h_{0}-\alpha \frac{d R\left(h_{0}\right)}{d h}
$$

c) 1
d) 2

To answer, go to menti.com and enter the code 7933 4859.

Solution

$$
R_{\text {sq }}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2} \quad \frac{d R_{\text {sq }}}{d h}(h)=\frac{2}{n} \sum_{i=1}^{n}\left(h-y_{i}\right)
$$

Data values are $-4,-2,2,4$. Pick $h_{0}=4$ and $\alpha=1 / 4$. Find h_{1}.

$$
\begin{aligned}
& h_{i}=h_{i-1}-\alpha \frac{d R_{s q}}{d h}\left(h_{i-1}\right) \\
& \Rightarrow h_{1}=h_{0}-\alpha \frac{d R}{d h}\left(h_{0}\right) \\
& \Rightarrow h_{1}=4-\frac{1}{4} \times 8=2 \\
& \frac{d R(4)}{d h}=\frac{2}{4}[(4-(-4))+(4-(-2))+(4-2) \\
& \quad+(4-4)]=\frac{1}{2} \cdot 16=8
\end{aligned}
$$

