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Announcements
▶ Look at the readings linked on the course website!

▶ First Discussion: Monday, October 3rd 2022
First Homework Release: Friday, September 30th 2022
(done)
First Groupwork Release: Thursday, September 29th 2022
(done)
Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture
Homework Submission Day: Friday before

▶ See dsc40a.com/calendar for the Office Hours schedule.

dsc40a.com/calendar


Agenda

▶ Brief recap of Lecture 4.

▶ Gradient descent fundamentals.

▶ Gradient descent demo.

▶ When is gradient descent guaranteed to work?
▶ Recap of “convexity”.

▶ The theoretical importance of convexity in
optimization.



Correction for Lecture 4

Discussion Question

Suppose 𝐿 considers all outliers to be equally as bad.
What would it look like far away from 𝑦?

a) flat
b) rapidly decreasing
c) rapidly increasing

Answer: A - Flat.



A new loss function



The recipe
Suppose we’re given a dataset, 𝑦1, 𝑦2, ..., 𝑦𝑛 and want to
determine the best future prediction ℎ∗.
The recipe is as follows:
1. Choose a loss function 𝐿(ℎ, 𝑦) that measures how far our
prediction ℎ is from the “right answer” 𝑦.
▶ Absolute loss, 𝐿𝑎𝑏𝑠(ℎ, 𝑦) = |𝑦 − ℎ|.

▶ Squared loss, 𝐿𝑠𝑞(ℎ, 𝑦) = (𝑦 − ℎ)2.

2. Find ℎ∗ by minimizing the average of our chosen loss
function over the entire dataset.
▶ “Empirical risk” is just another name for average loss.

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦)



A very insensitive loss
▶ Last time, we introduced a new loss function, 𝐿𝑢𝑐𝑠𝑑 , with
the property that it (roughly) penalizes all bad predictions
the same.
▶ Under 𝐿𝑢𝑐𝑠𝑑 , a prediction that is wrong by 50 has
approximately the same loss as a prediction that is
wrong by 500.

▶ The effect: 𝐿𝑢𝑐𝑠𝑑 is not as sensitive to outliers.



𝐿𝑢𝑐𝑠𝑑
▶ The formula for 𝐿𝑢𝑐𝑠𝑑 is as follows (no need to memorize):

𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) = 1 − 𝑒−(𝑦−ℎ)
2/𝜎2

▶ The shape (and formula) come from an upside-down
bell curve.

▶ 𝐿𝑢𝑐𝑠𝑑 contains a scale parameter, 𝜎.
▶ Nothing to do with variance or standard deviation.

▶ Accounts for the fact that different datasets have
different thresholds for what counts as an outlier.

▶ Think of 𝜎 as a knob that you get to turn – the larger
𝜎 is, the more sensitive 𝐿𝑢𝑐𝑠𝑑 is to outliers (and the
more smooth 𝑅𝑢𝑐𝑠𝑑 is).



There’s a problem with 𝑅𝑢𝑐𝑠𝑑
▶ The corresponding empirical risk, 𝑅𝑢𝑐𝑠𝑑 , is

𝑅𝑢𝑐𝑠𝑑(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
[1 − 𝑒−(𝑦𝑖−ℎ)2/𝜎2]

▶ 𝑅𝑢𝑐𝑠𝑑 is differentiable.

▶ Last time, we took the derivative of 𝑅𝑢𝑐𝑠𝑑(ℎ) and set it
equal to 0.

0 = 2
𝑛𝜎2

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖) ⋅ 𝑒−(𝑦𝑖−ℎ)

2/𝜎2

▶ There’s no solution to this equation. So now what?



Gradient descent fundamentals



The general problem

▶ Given: a differentiable function 𝑅(ℎ).

▶ Goal: find the input ℎ∗ that minimizes 𝑅(ℎ).



Meaning of the derivative

▶ We’re trying to minimize a differentiable function 𝑅(ℎ). Is
calculating the derivative helpful?

▶ 𝑑𝑅
𝑑ℎ (ℎ) is a function; it gives the slope at ℎ.



Key idea behind gradient descent

▶ If the slope of 𝑅 at ℎ is positive then moving to the left
decreases the value of 𝑅.

▶ i.e., we should decrease ℎ.



Key idea behind gradient descent

▶ If the slope of 𝑅 at ℎ is negative then moving to the right
decreases the value of 𝑅.

▶ i.e., we should increase ℎ.



Key idea behind gradient descent

▶ Pick a starting place, ℎ0. Where do we go next?

▶ Slope at ℎ0 negative? Then increase ℎ0.

▶ Slope at ℎ0 positive? Then decrease ℎ0.

▶ This will work:
ℎ1 = ℎ0 −

𝑑𝑅
𝑑ℎ (ℎ0)



Gradient Descent
▶ Pick 𝛼 to be a positive number. It is the learning rate, also
known as the step size.

▶ Pick a starting prediction, ℎ0.

▶ On step 𝑖, perform update ℎ𝑖 = ℎ𝑖−1 − 𝛼 ⋅
𝑑𝑅
𝑑ℎ (ℎ𝑖−1)

▶ Repeat until convergence (when ℎ doesn’t change much).

▶ Note: it’s called gradient descent because the “gradient”
is the generalization of the derivative for multivariate
functions.



You will not be responsible for implementing gradient descent
in this class, but here’s an implementation in Python if you’re
curious:

def gradient_descent(derivative, h, alpha, tol=1e-12):
”””Minimize using gradient descent.”””
while True:

h_next = h - alpha * derivative(h)
if abs(h_next - h) < tol:

break
h = h_next

return h



Example: Minimizing mean squared error
▶ Recall the mean squared error and its derivative:

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − ℎ)2

𝑑𝑅sq
𝑑ℎ (ℎ) = 2𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)

Discussion Question

Let 𝑦1 = −4, 𝑦2 = −2, 𝑦3 = 2, 𝑦4 = 4. Pick ℎ0 = 4
and 𝛼 = 1/4. What is ℎ1?

a) -1
b) 0
c) 1
d) 2

Should we go to the left or right?



Solution

𝑅sq(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)2

𝑑𝑅sq
𝑑ℎ (ℎ) = 2𝑛

𝑛
∑
𝑖=1
(ℎ − 𝑦𝑖)

Data values are −4, −2, 2, 4. Pick ℎ0 = 4 and 𝛼 = 1/4. Find ℎ1.

We have:

𝑑𝑅sq
𝑑ℎ (4) = 24[(4− (−4)) + (4− (−2)) + (4−2)+ (4−4)] =

1
2(8+6+2) = 8

Updating step:

ℎ1 = ℎ0 − 𝛼
𝑑𝑅sq
𝑑ℎ (ℎ0) = 4 −

1
4 ⋅ 8 = 2

It looks correct, because we move closer to the mean (that is
0).
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When is gradient descent guaranteed to work?



Convex functions

Convex Non-convex



Convexity: Definition

▶ 𝑓 is convex if for every 𝑎, 𝑏 in the domain of 𝑓 , the line
segment between

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))

does not go below the plot of 𝑓 .



Convexity: Definition

▶ 𝑓 is convex if for every 𝑎, 𝑏 in the domain of 𝑓 , the line
segment between

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))

does not go below the plot of 𝑓 .



Convexity: Formal definition

▶ A function 𝑓 ∶ ℝ → ℝ is convex if for every choice of 𝑎, 𝑏
and 𝑡 ∈ [0, 1]:

(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏) ≥ 𝑓((1 − 𝑡)𝑎 + 𝑡𝑏)

▶ This is a formal way of restating the condition from the
previous slide.



Discussion Question

Which of these functions is not convex?
a) 𝑓(𝑥) = |𝑥|
b) 𝑓(𝑥) = 𝑒𝑥
c) 𝑓(𝑥) = √𝑥 − 1
c) 𝑓(𝑥) = (𝑥 − 3)24

Answer: C. But why?
First, let’s draw by

https://www.desmos.com/calculator

https://www.desmos.com/calculator
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Convex vs. Concave (1)

𝑓(𝑥) = |𝑥|

Convex



Convex vs. Concave (2)

𝑓(𝑥) = 𝑒𝑥

Convex



Convex vs. Concave (3)

𝑓(𝑥) = (𝑥 − 3)24

Convex



Convex vs. Concave (4)

𝑓(𝑥) = √𝑥 − 1

Concave!



Concave function

A concave function is the negative of a convex function.

We just need to reverse the Jensen’s inequality.



Observations

▶ Convex function: The slope increases (i.e. 𝑓′(𝑥) increases
when 𝑥 increases).

▶ Concave function: The slope decreases (i.e. 𝑓′(𝑥)
decreases when 𝑥 increases).

Can we design another test for convexity and concavity?

Second-order derivative test:
▶ 𝑓″(𝑥) > 0 ⇒ Convex

▶ 𝑓″(𝑥) < 0 ⇒ Concave
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Convex test

Consider:
𝑓(𝑥) = 𝑒𝑥

We have:
𝑓′(𝑥) = 𝑒𝑥

𝑓″(𝑥) = 𝑒𝑥 > 0
Thus, 𝑒𝑥 is a convex function.



Concave test

Consider:
𝑓(𝑥) = √𝑥 − 1

We have:
𝑓′(𝑥) = 1

2√𝑥 − 1

𝑓″(𝑥) = −12⋅
1

𝑥 − 1⋅(√𝑥 − 1)
′ = −12⋅

1
𝑥 − 1⋅

1
2√𝑥 − 1

= −14⋅
1

(√𝑥 − 1)3
< 0

Thus, √𝑥 − 1 is a concave function.
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Why does convexity matter?

▶ Convex functions are (relatively) easy to minimize with
gradient descent.

▶ Theorem (informal): if 𝑅(ℎ) is convex and differentiable
then gradient descent converges to a global minimum of
𝑅 provided that the step size is small enough.

▶ Why?
▶ If a function is convex and has a local minimum, that
local minimum must be a global minimum.

▶ In other words, gradient descent won’t get
stuck/terminate in local minimums that aren’t global
minimums (as happened with 𝑅𝑢𝑐𝑠𝑑(ℎ) and a small 𝜎
in our demo).



Nonconvexity and gradient descent

▶ We say a function is nonconvex if it does not meet the
criteria for convexity.

▶ Nonconvex functions are (relatively) hard to minimize.

▶ Gradient descent can still be useful, but it’s not
guaranteed to converge to a global minimum.
▶ We saw this when trying to minimize 𝑅𝑢𝑐𝑠𝑑(ℎ) with a
smaller 𝜎.



Second derivative test for convexity
▶ If 𝑓(𝑥) is a function of a single variable and is twice
differentiable, then: 𝑓(𝑥) is convex if and only if 𝑑

2𝑓
𝑑𝑥2 (𝑥) ≥ 0

for all 𝑥.

▶ A twice-differentiable function 𝑓 ∶ ℝ𝑛 → ℝ is convex if
and only if the Hessian ∇2𝑓(𝑥) ∈ ℝ𝑛×𝑛 is positive
semi-definite at every 𝑥 ∈ ℝ𝑛.

Convex Non-convex



Convexity of empirical risk

▶ If 𝐿(ℎ, 𝑦) is a convex function (when 𝑦 is fixed) then

𝑅(ℎ) = 1𝑛
𝑛
∑
𝑖=1
𝐿(ℎ, 𝑦𝑖)

is convex.
▶ Why? Because sums of convex functions are convex.

▶ What does this mean?
▶ If a loss function is convex (for a particular type of
prediction), then the corresponding empirical risk
will also be convex.



Convexity of loss functions

▶ Is 𝐿sq(ℎ, 𝑦) = (𝑦 − ℎ)2 convex?

Yes.

▶ Is 𝐿abs(ℎ, 𝑦) = |𝑦 − ℎ| convex? Yes.

▶ Is 𝐿𝑢𝑐𝑠𝑑(ℎ, 𝑦) convex? No.
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Convexity of loss functions
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Convexity of 𝑅𝑢𝑐𝑠𝑑
▶ A function can be convex in a region.

▶ If 𝜎 is large, 𝑅𝑢𝑐𝑠𝑑(ℎ) is convex in a big region around data.
▶ A large 𝜎 led to a very smooth, parabolic-looking
empirical risk function with a single local minimum
(which was a global minimum).

▶ If 𝜎 is small, 𝑅𝑢𝑐𝑠𝑑(ℎ) is convex in only small regions.
▶ A small 𝜎 led to a very bumpy empirical risk function
with many local minimums.



Discussion Question

Recall the empirical risk for absolute loss,

𝑅𝑎𝑏𝑠(ℎ) =
1
𝑛

𝑛
∑
𝑖=1
|𝑦𝑖 − ℎ|

Is𝑅𝑎𝑏𝑠(ℎ) convex? Is gradient descent guaranteed to find
a global minimum, given an appropriate step size?

a) YES convex, YES guaranteed
b) YES convex, NOT guaranteed
c) NOT convex, YES guaranteed
c) NOT convex, NOT guaranteed

Answer: A. Mostly! We have to care about where we cannot
compute the derivative.
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Summary



Summary

▶ Gradient descent is a general tool used to minimize
differentiable functions.
▶ We will usually use it to minimize empirical risk, but
it can minimize other things, too.

▶ Gradient descent updates guesses for ℎ∗ by using the
update rule

ℎ𝑖 = ℎ𝑖−1 − 𝛼 ⋅ (
𝑑𝑅
𝑑ℎ (ℎ𝑖−1))

▶ Convex functions are (relatively) easy to optimize with
gradient descent.

▶ We like convex loss functions, like the squared loss and
absolute loss.



What’s next?
▶ So far, we’ve been predicting future values (salary, for
instance) without using any information about the
individual.
▶ GPA.

▶ Years of experience.

▶ Number of LinkedIn connections.

▶ Major.

▶ How do we incorporate this information into our
prediction-making process?


