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Announcements

Look at the readings linked on the course website!

Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture
Homework Submission Day: Friday before lecture

See dscs40a.com/calendar for the Office Hours schedule.


dsc40a.com/calendar

Agenda

Recap of gradient descent.
Prediction rules.

Minimizing mean squared error, again.



Recap: gradient descent



Gradient descent

The goal of gradient descent is to minimize a function
R(h).

Gradient descent starts off with an initial guess h, of
where the minimizing input to R(h) is, and on each step
tries to get closer to the minimizing input h* by moving
opposite the direction of the slope:

dR
“gn )
a is known as the learning rate, or step size. It
controls how much we update our guesses by on
each iteration.

hl =hi—1 -a

Gradient descent terminates once the guesses h; and h,_,
stop changing much.



You will not be responsible for implementing gradient descent
in this class, but here's an implementation in Python if you're
curious:

def gradient_descent(derivative, h, alpha, tol=1e-12):
"""Minimize using gradient descent.”"”
while True:
h_next = h - alpha * derivative(h)
if abs(h_next - h) < tol:
break
h = h_next
return h



Gradient descent (convex loss)
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Local minimum (Non-convex loss)
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Convex vs. Non-convex (higher dimensions)

Convex & Non-convex



Gradient descent in higher dimensions




Problem with learning rates

Too low

Just right Too high

A small learning rate
requires many updates
before reaching the
minimum point

The opt.lmal learning Too large of a learning rate

I’a.te.swlfﬂy r?aches the causes drastic updates

minimum point which lead to divergent
behaviors



Why does convexity matter?
Gradient descent:

dR
hi=h;-a;- Zp(his)

1

where q; is the learning rate at step i-th.

Theorem (informal): if R(h) is convex and differentiable
then gradient descent converges to a global minimum of
R provided that the step size is small enough (i.e.
lim,,,.0; = 0).

Why?

Convex functions are (relatively) easy to minimize with
gradient descent. If a function is convex and has a local
minimum, that local minimum must be a global minimum.



Nonconvexity and gradient descent

We say a function is nonconvex if it does not meet the
criteria for convexity.

Nonconvex functions are (relatively) hard to minimize.

Gradient descent can still be useful, but it's not

guaranteed to converge to a global minimum.
We saw this when trying to minimize R
smaller o.

(h) with a

ucsd



Second derivative test for convexity

If f(x) is a function of a single variable and is twice

differentiable, then: f(x) is convex if and only if %(x) 20
for all x.

A twice-differentiable function f : R” — R is convex if
and only if the Hessian V2 f(x) € R™" is positive
semi-definite at every x € R".

Convex Non-convex



Convexity of empirical risk

If L(h, y) is a convex function (when y is fixed) then

1 n
—> Lh,y,)
i=1

S

is convex.
Why? Because sums of convex functions are convex.

What does this mean?
If a loss function is convex (for a particular type of
prediction), then the corresponding empirical risk
will also be convex.



Convexity of loss functions

Is Lo (h,y) = (y - h)? convex?



Convexity of loss functions

Is Lo (h,y) = (y - h)? convex? Yes.

Is L ,.(h,y) =y - h| convex?



Convexity of loss functions
Is Lo (h,y) = (y - h)? convex? Yes.
Is L ,.(h,y) = |y - h| convex? Yes.

Is L, ..4(h,y) convex?



Convexity of loss functions
Is Lo (h,y) = (y - h)? convex? Yes.
Is L ,.(h,y) = |y - h| convex? Yes.

Is L,.4(h,y) convex? No.



Convexity of R __,

A function can be convex in a region.

If 0 is large, R ,4(h) is convex in a big region around data.

A large o led to a very smooth, parabolic-looking
empirical risk function with a single local minimum
(which was a global minimum).

If o is small, R, .,(h) is convex in only small regions.

A small o led to a very bumpy empirical risk function
with many local minimums.



Discussion Question

Recall the empirical risk for absolute loss,

1 n
Raps(h) = = > 1y; = hl
i=1

IsR,,s(h) convex? Is gradient descent guaranteed to find
a global minimum, given an appropriate step size?

a) YES convex, YES guaranteed

b) YES convex, NOT guaranteed
c) NOT convex, YES guaranteed
c) NOT convex, NOT guaranteed




Discussion Question

Recall the empirical risk for absolute loss,

1 n
Raps(h) = = > 1y; = hl
i=1

IsR,,s(h) convex? Is gradient descent guaranteed to find
a global minimum, given an appropriate step size?

a) YES convex, YES guaranteed

b) YES convex, NOT guaranteed
c) NOT convex, YES guaranteed
c) NOT convex, NOT guaranteed

Answer: A. Mostly! We have to care about where we cannot
compute the derivative.



When does gradient descent work?

A function f is convex if, for any two inputs a and b, the
line segment connecting the two points (a, f(a)) and
(b, f(b)) does not go below the function f.

Raps(h) = 137, ly; - hl: convex.
Req(h) = % > (y; - h)%: convex.
R,csq(h) = %Z?ﬂ [1- e‘(yi'h)zl"z]: not convex.

Theorem: If R(h) is convex and differentiable then
gradient descent converges to a global minimum of R
given an appropriate step size.



Prediction rules



How do we predict someone’s salary?

After collecting salary data, we...
Choose a loss function.

Find the best prediction by minimizing empirical risk.

So far, we've been predicting future salaries without using
any information about the individual (e.g. GPA, years of
experience, number of LinkedIn connections).

New focus: How do we incorporate this information into
our prediction-making process?



Features

A feature is an attribute — a piece of information.

Numerical: age, height, years of experience

Categorical: college, city, education level

Boolean: knows Python?, had internship?

Think of features as columns in a DataFrame (i.e. table).

YearsExperience Age FormalEducation Salary
0 6.37 28.39 Master’s degree (MA, MS, M.Eng., MBA, etc.) 120000.0
1 0.35 25.78 Some college/university study without earning ... 120000.0
2 4.05 31.04 Bachelor’s degree (BA, BS, B.Eng., etc.)  70000.0
3 18.48 38.78 Bachelor's degree (BA, BS, B.Eng., etc.) 185000.0
4 4,95 33.45 Master’s degree (MA, MS, M.Eng., MBA, etc.) 125000.0



Variables

The features, x, that we base our predictions on are called
predictor variables.

The quantity, y, that we're trying to predict based on
these features is called the response variable.

We'll start by predicting salary based on years of
experience.



Prediction rules

We believe that salary is a function of experience.

In other words, we think that there is a function H such

that:
salary =~ H(years of experience)

H is called a hypothesis function or prediction rule.

Our goal: find a good prediction rule, H.



Possible prediction rules

H,(years of experience) = $50,000 + $2,000 x (years of experience)
. B  exoer
H,(years of experience) = $60,000 x 1.05(vears of experience)

H,(years of experience) = $100,000 - $5,000 x (years of experience)

These are all valid prediction rules.

Some are better than others.



Comparing predictions

How do we know which prediction rule is best: H,, H,, H5?

We gather data from n people. Let x; be experience, y; be

salary:
(Experience,, Salary,) (X, ¥,)
(Experience,, Salary,) . (X, V)
(Experience,, Salary,,) (x,,Y,)

See which rule works better on data.



ex

rience



Quantifying the quality of a prediction rule H

Our prediction for person i’s salary is H(x;).

As before, we'll use a loss function to quantify the quality
of our predictions.
Absolute loss: |y; - H(x;)|.

Squared loss: (y; - H(xi))z.

We'll use squared loss, since it's differentiable.

Using squared loss, the empirical risk (mean squared
error) of the prediction rule H is:

RuglH) = 5 2 (1~ )



Mean squared error

ex?ar.‘ ence



Finding the best prediction rule

Goal: out of all functions R = R, find the function H* with
the smallest mean squared error.

That is, H* should be the function that minimizes

1 n
Hy=22 (i

i=1
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Discussion Question

Given the data below, is there a prediction rule H which
has zero mean squared error? Yes or No?
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Discussion Question

Given the data below, is there a prediction rule H which
has zero mean squared error? Yes or No?

Answer: Yes! That is bad! Why?

Next time: We will learn more about the choice of H.



