Lecture 7 - Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego
Mahdi Soleymani, with help from many others

Announcements

- Groupwork 2 is due Monday 10/10 at 23:59pm.
- Midterm: 10/28 during class time.
- Friday, 3-4PM, 4-5 PCYYNH 122.

Agenda

- Recap of gradient descent.
- Prediction rules.
- Minimizing mean squared error, again.

Convex functions

Convex

Non-convex

Discussion Question

Which of these functions is not convex?
a) $f(x)=|x|$

c.) $f(x)=\sqrt{x-1}$
d) $f(x)=(x-3)$ even

To answer, go to menti.com and enter the code 4821 5997.

Why does convexity matter?

- Convex functions are (relatively) easy to minimize with gradient descent.
- Theorem: if $R(h)$ is convex and differentiable then gradient descent converges to a global minimum of R provided that the step size is small enough.

Why?

- If a function is convex and has a local minimum, that local minimum must be a global minimum.
- In other words, gradient descent won't get stuck/terminate in local minimums that aren't global minimums (as happened with $R_{u c s d}(h)$ and a small σ in our demo).

Nonconvexity and gradient descent

- We say a function is nonconvex if it does not meet the criteria for convexity.
- Nonconvex functions are (relatively) hard to minimize.
- Gradient descent can still be useful, but it's not guaranteed to converge to a global minimum.
- We saw this when trying to minimize $R_{u c s d}(h)$ with a smaller σ.

Second derivative test for convexity
If $f(x)$ is a function of a single variable and is twice differentiable, then:
$f(x)$ is convex if and only if $\frac{d^{2} f}{d x^{2}}(x) \geq 0$ for all x.
Example: $f(x)=x^{4}$ is convex.

$$
g(x)=\frac{d f}{d x}
$$

Convex

Non-convex

Convexity of empirical risk

- If $L(h, y)$ is a convex function (when y is fixed) then
$f(x)+g(x)$

- Why? Because sums of convex functions are convex.
- What does this mean?
- If a loss function is convex (for a particular type of prediction), then the corresponding empirical risk will also be convex.

Convexity of loss functions
Is $L_{\text {sq }}(h, y)=(y-h)^{2}$ convex? Yes or No.

Is $L_{\text {abs }}(h, y)=|y-h|$ convex? Yes or No.

Is $L_{\text {ucsd }}(h, y)$ convex? Yes or No.

Convexity of $R_{\text {ucsd }}$

- A function can be convex in a region.

- If σ is large, $R_{u c s d}(h)$ is convex in a big region around data.
- A large σ led to a very smooth, parabolic-looking empirical risk function with a single local minimum (which was a global minimum).
- If σ is small, $R_{\text {ucsd }}(h)$ is convex in only small regions.
- A small σ led to a very bumpy empirical risk function with many local minimums.

Discussion Question

Recall the empirical risk for absolute loss,

$$
R_{a b s}(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|
$$

Is $R_{a b s}(h)$ convex? Is gradient descent guaranteed to find a global minimum, given an appropriate step size?
a) YES convex, YES guaranteed
b) YES convex, NOT guaranteed
c) NOT convex, YES guaranteed
d) NOT convex, NOT guaranteed

To answer, go to menti.com and enter the code 4821 5997.

Summary of gradient descent

Gradient descent

- The goal of gradient descent is to minimize a function $R(h)$.
- Gradient descent starts off with an initial guess h_{0} of where the minimizing input to $R(h)$ is, and on each step tries to get closer to the minimizing input h^{*} by moving opposite the direction of the slope:

$$
h_{i}=h_{i-1}-\alpha \cdot \frac{d R}{d h}\left(h_{i-1}\right)
$$

α is known as the learning rate, or step size. It controls how much we update our guesses by on each iteration.
\Rightarrow Gradient descent terminates once the guesses h_{i} and h_{i-1} stop changing much. $\quad\left|h_{i}-h_{i-1}\right| \leqslant$ tol ~ 0.001

See Lecture 5's supplemental notebook for animations.

When does gradient descent work?

\Rightarrow A function f is convex if, for any two inputs a and b, the line segment connecting the two points $(a, f(a))$ and ($b, f(b)$) does not go below the function f.
$\Rightarrow R_{a b s}(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|$: convex.
$\Rightarrow R_{\text {sq }}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2}$: convex.
$>R_{\text {ucsd }}(h)=\frac{1}{n} \sum_{i=1}^{n}\left[1-e^{-\left(y_{i}-h\right)^{2} / \sigma^{2}}\right]$: not convex.

- Theorem: If $R(h)$ is convex and differentiable then gradient descent converges to a global minimum of R given an appropriate step size.

Prediction rules

How do we predict someone's salary?

After collecting salary data, we...

1. Choose a loss function.
2. Find the best prediction by minimizing empirical risk.

- So far, we've been predicting future salaries without using any information about the individual (e.g. GPA, years of experience, number of LinkedIn connections).
- New focus: How do we incorporate this information into our prediction-making process?

Features

A feature is an attribute - a piece of information.

- Numerical: age, height, years of experience
- Categorical: college, city, education level
- Boolean: knows Python?, had internship?

Think of features as columns in a DataFrame (i.e. table).

| | YearsExperience | Age | FormalEducation | Salary |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 6.37 | 28.39 | Master's degree (MA, MS, M.Eng., MBA, etc.) | 120000.0 |
| $\mathbf{1}$ | 0.35 | 25.78 | Some college/university study without earning ... | 120000.0 |
| $\mathbf{2}$ | 4.05 | 31.04 | Bachelor's degree (BA, BS, B.Eng., etc.) | 70000.0 |
| $\mathbf{3}$ | 18.48 | 38.78 | Bachelor's degree (BA, BS, B.Eng., etc.) | 185000.0 |
| $\mathbf{4}$ | 4.95 | 33.45 | Master's degree (MA, MS, M.Eng., MBA, etc.) | 125000.0 |

Variables

- The features, x, that we base our predictions on are called predictor variables.
\Rightarrow The quantity, y, that we're trying to predict based on these features is called the response variable.
- We'll start by predicting salary based on years of experience.

Prediction rules

- We believe that salary is a function of experience.
- In other words, we think that there is a function H such that: $\quad \downarrow$ function
salary $\approx H$ (years of experience)
x
- H is called a hypothesis function or prediction rule.
- Our goal: find a good prediction rule, H.

Possible prediction rules

H_{1} (years of experience) $=\$ 50,000+\$ 2,000 \times$ (years of experience)
H_{2} (years of experience) $=\$ 60,000 \times 1.05$ (years of experience)
H_{3} (years of experience) $=\$ 100,000-\$ 5,000 \times$ (years of experience)

- These are all valid prediction rules.
- Some are better than others.

Comparing predictions

\Rightarrow How do we know which prediction rule is best: H_{1}, H_{2}, H_{3} ?
\Rightarrow We gather data from n people. Let x_{i} be experience, y_{i} be salary:

> (Experience $_{1}$, Salary ${ }_{1}$) (Experience $_{2}$, Salary $_{2}$) \ldots (Experience n , Salary $_{n}$)

- See which rule works better on data.

$$
H(x)
$$

Example

Quantifying the quality of a prediction rule H

- Our prediction for person i's salary is $H\left(x_{i}\right)$.
- As before, we'll use a loss function to quantify the quality of our predictions.
- Absolute loss: $\left|y_{i}-H\left(x_{i}\right)\right|$.
- Squared loss: $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$.
- We'll use squared loss, since it's differentiable.
- Using squared loss, the empirical risk (mean squared error) of the prediction rule H is:

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

Mean squared error

Finding the best prediction rule

\Rightarrow Goal: out of all functions $\mathbb{R} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error.
\Rightarrow That is, H^{*} should be the function that minimizes

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- There's a problem.

Discussion Question

Given the data below, is there a prediction rule H which has zero mean squared error?
a) Yes b) No

To answer, go to menti.com and enter the code 4821 5997.

Problem

- We can make mean squared error very small, even zero!
- But the function will be weird.
- This is called overfitting.
- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
- Linear: $H(x)=w_{0}+w_{1} x$.
\Rightarrow Quadratic: $H(x)=w_{0}+w_{1} x_{1}+w_{2} x^{2}$.
\Rightarrow Exponential: $H(x)=w_{0} e^{w_{1} x}$.
\Rightarrow Constant: $H(x)=w_{0}$.

Finding the best linear prediction rule

- Goal: out of all linear functions $\mathbb{R} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error.
- Linear functions are of the form $H(x)=w_{0}+w_{1} x$.
\Rightarrow They are defined by a slope $\left(w_{1}\right)$ and intercept $\left(w_{0}\right)$.
\Rightarrow That is, H^{*} should be the linear function that minimizes

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- This problem is called least squares regression.
- "Simple linear regression" refers to linear regression with a single predictor variable.

Minimizing mean squared error for the linear prediction rule

Minimizing the mean squared error

\Rightarrow The MSE is a function $R_{\text {sq }}$ of a function H.

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

\Rightarrow But since H is linear, we know $H\left(x_{i}\right)=w_{0}+w_{1} x_{i}$.

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

\Rightarrow Now $R_{\text {sq }}$ is a function of w_{0} and w_{1}.
\Rightarrow We call w_{0} and w_{1} parameters.

- Parameters define our prediction rule.

Updated goal

- Find the slope w_{1}^{*} and intercept w_{0}^{*} that minimize the MSE, $R_{\text {sq }}\left(w_{0}, w_{1}\right)$:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- Strategy: multivariable calculus.

Recall: the gradient

- If $f(x, y)$ is a function of two variables, the gradient of f at the point $\left(x_{0}, y_{0}\right)$ is a vector of partial derivatives:

$$
\nabla f\left(x_{0}, y_{0}\right)=\binom{\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)}{\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)}
$$

$>$ Key Fact \#1: The derivative is to the tangent line as the gradient is to the tangent plane.

- Key Fact \#2: The gradient points in the direction of the biggest increase.
- Key Fact \#3: The gradient is zero at critical points.

Strategy

To minimize $R\left(w_{0}, w_{1}\right)$: compute the gradient, set it equal to zero, and solve.
$R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$

Discussion Question

Choose the expression that equals $\frac{\partial R_{\text {sq }}}{\partial w_{0}}$.
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
b) $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
c) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
d) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

Go to menti. com and enter the code 48215997.

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=
\end{aligned}
$$

Strategy

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \quad-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

1. Solve for w_{0} in first equation.

- The result becomes w_{0}^{*}, since it is the "best intercept".

2. Plug w_{0}^{*} into second equation, solve for w_{1}.
\Rightarrow The result becomes w_{1}^{*}, since it is the "best slope".

Solve for w_{0}^{*}
$-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0$

Solve for w_{1}^{*}

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

Least squares solutions

\Rightarrow We've found that the values w_{0}^{*} and w_{1}^{*} that minimize the function $R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$ are

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

where

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- Let's re-write the slope w_{1}^{*} to be a bit more symmetric.

Key fact

The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:

Equivalent formula for w_{1}^{*}

Claim

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof:

Least squares solutions

\Rightarrow The least squares solutions for the slope w_{1}^{*} and intercept w_{0}^{*} are:

$$
w_{1}^{\star}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1} \bar{x}
$$

- We also say that w_{0}^{*} and w_{1}^{*} are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$
H^{*}(x)=w_{0}^{\star}+w_{1}^{*} x
$$

Example

$$
\begin{array}{llllll}
\hline x_{i} & y_{i} & \left(x_{i}-\bar{x}\right) & \left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)^{2} \\
\hline 3 & 7 & & & & \\
4 & 3 & & & & \\
8 & 2 & & & &
\end{array}
$$

Summary

- Gradient descent is a general tool used to minimize differentiable functions.
- Gradient descent updates guesses for h^{*} by using the update rule

$$
h_{i}=h_{i-1}-\alpha \cdot\left(\frac{d R}{d h}\left(h_{i-1}\right)\right)
$$

- Convex functions are (relatively) easy to optimize with gradient descent.
- We introduced prediction rule framework to incorporate features in our predictions.
\Rightarrow We introduced the linear prediction rule, $H(x)=w_{0}+w_{1} x$.
- To determine the best choice of slope $\left(w_{1}\right)$ and intercept (w_{0}), we chose the squared loss function $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$ and minimized empirical risk $R_{s q}\left(w_{0}, w_{1}\right)$:

$$
R_{s q}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- After solving for w_{0}^{*} and w_{1}^{*} through partial differentiation, we have a prediction rule $H^{*}(x)=w_{0}^{*}+w_{1}^{*} x$ that we can use to make predictions about the future.

