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Announcements
▶ Don’t forget to submit your homework!

▶ Look at the readings linked on the course website!

▶ Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture
Homework Submission Day: Friday before lecture

▶ See dsc40a.com/calendar for the Office Hours schedule.

dsc40a.com/calendar


Agenda

▶ Recap of prediction rules.

▶ Simple linear regression.



How do we predict someone’s salary?
After collecting salary data, we...
1. Choose a loss function.

2. Find the best prediction by minimizing empirical risk.

▶ So far, we’ve been predicting future salaries without using
any information about the individual (e.g. GPA, years of
experience, number of LinkedIn connections).

▶ New focus: How do we incorporate this information into
our prediction-making process?



Features
A feature is an attribute – a piece of information.

▶ Numerical: age, height, years of experience

▶ Categorical: college, city, education level

▶ Boolean: knows Python?, had internship?

Think of features as columns in a DataFrame (i.e. table).



Variables
▶ The features, 𝑥, that we base our predictions on are called
predictor variables.

▶ The quantity, 𝑦, that we’re trying to predict based on
these features is called the response variable.

▶ We’ll start by predicting salary based on years of
experience.



Prediction rules
▶ We believe that salary is a function of experience.

▶ In other words, we think that there is a function 𝐻 such
that:

salary ≈ 𝐻(years of experience)

▶ 𝐻 is called a hypothesis function or prediction rule.

▶ Our goal: find a good prediction rule, 𝐻.



Comparing predictions

▶ How do we know which prediction rule is best: 𝐻1, 𝐻2, 𝐻3?

▶ We gather data from 𝑛 people. Let 𝑥𝑖 be experience, 𝑦𝑖 be
salary:

(Experience1, Salary1)
(Experience2, Salary2)

...
(Experience𝑛, Salary𝑛)

→
(𝑥1, 𝑦1)
(𝑥2, 𝑦2)
...

(𝑥𝑛, 𝑦𝑛)

▶ See which rule works better on data.



Example



Quantifying the quality of a prediction rule 𝐻
▶ Our prediction for person 𝑖’s salary is 𝐻(𝑥𝑖).

▶ As before, we’ll use a loss function to quantify the quality
of our predictions.
▶ Absolute loss: |𝑦𝑖 − 𝐻(𝑥𝑖)|.

▶ Squared loss: (𝑦𝑖 − 𝐻(𝑥𝑖))
2.

▶ We’ll use squared loss, since it’s differentiable.

▶ Using squared loss, the empirical risk (mean squared
error) of the prediction rule 𝐻 is:

𝑅𝑠𝑞(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))

2



Finding the best prediction rule

▶ Goal: out of all functions ℝ → ℝ, find the function 𝐻∗ with
the smallest mean squared error.

▶ That is, 𝐻∗ should be the function that minimizes

𝑅𝑠𝑞(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))

2

▶ There’s a problem.



Discussion Question

Given the data above, is there a prediction rule 𝐻 which
has zero mean squared error?

a) Yes b) No

Answer: Yes



Discussion Question

Given the data above, is there a prediction rule 𝐻 which
has zero mean squared error?

a) Yes b) No

Answer: Yes



Lagrange interpolation (polynomial)

The degree of the polynomial is exactly the number of data
points



Lagrange interpolation (polynomial)

The degree of the polynomial is exactly the number of data
points



Problem
▶ We can make mean squared error very small, even zero!

▶ But the function will be weird.

▶ This is called overfitting.

▶ Remember our real goal: make good predictions on data
we haven’t seen.



Solution
▶ Don’t allow 𝐻 to be just any function.

▶ Require that it has a certain form.

▶ Examples:
▶ Linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.
▶ Quadratic: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2.
▶ Exponential: 𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥 .
▶ Constant: 𝐻(𝑥) = 𝑤0.



Finding the best linear prediction rule

▶ Goal: out of all linear functions ℝ → ℝ, find the function
𝐻∗ with the smallest mean squared error.
▶ Linear functions are of the form 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.

▶ They are defined by a slope (𝑤1) and intercept (𝑤0).

▶ That is, 𝐻∗ should be the linear function that minimizes

𝑅𝑠𝑞(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))

2

▶ This problem is called least squares regression.
▶ “Simple linear regression” refers to linear regression
with a single predictor variable.



Minimizing mean squared error for the linear
prediction rule



Minimizing the mean squared error

▶ The MSE is a function 𝑅sq of a function 𝐻.

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))

2

▶ But since 𝐻 is linear, we know 𝐻(𝑥𝑖) = 𝑤0 + 𝑤1𝑥𝑖.

𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ Now 𝑅𝑠𝑞 is a function of 𝑤0 and 𝑤1.

▶ We call 𝑤0 and 𝑤1 parameters.
▶ Parameters define our prediction rule.



Updated goal

▶ Find the slope 𝑤∗1 and intercept 𝑤∗0 that minimize the MSE,
𝑅sq(𝑤0, 𝑤1):

𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ Strategy: multivariable calculus.



Recall: the gradient

▶ If 𝑓(𝑥, 𝑦) is a function of two variables, the gradient of 𝑓 at
the point (𝑥0, 𝑦0) is a vector of partial derivatives:

∇𝑓(𝑥0, 𝑦0) = (
𝜕𝑓
𝜕𝑥 (𝑥0, 𝑦0)
𝜕𝑓
𝜕𝑦 (𝑥0, 𝑦0)

)

▶ Key Fact #1: The derivative is to the tangent line as the
gradient is to the tangent plane.

▶ Key Fact #2: The gradient points in the direction of the
biggest increase.

▶ Key Fact #3: The gradient is zero at critical points.



Strategy
To minimize 𝑅(𝑤0, 𝑤1): compute the gradient, set it equal to
zero, and solve.



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

Discussion Question

Choose the expression that equals
𝜕𝑅sq
𝜕𝑤0

.

a) 1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

b) −1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

c) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖

d) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

Discussion Question

Choose the expression that equals
𝜕𝑅sq
𝜕𝑤0

.

a) 1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

b) −1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

c) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖

d) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤0

= 𝜕
𝜕𝑤0

(1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2)

𝜕𝑅sq
𝜕𝑤0

= 1𝑛
𝑛
∑
𝑖=1

𝜕
𝜕𝑤0

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2

𝜕𝑅sq
𝜕𝑤0

= 2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕
𝜕𝑤0

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕𝑅sq
𝜕𝑤0

= −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤0

= 𝜕
𝜕𝑤0

(1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2)

𝜕𝑅sq
𝜕𝑤0

= 1𝑛
𝑛
∑
𝑖=1

𝜕
𝜕𝑤0

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2

𝜕𝑅sq
𝜕𝑤0

= 2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕
𝜕𝑤0

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕𝑅sq
𝜕𝑤0

= −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤0

= 𝜕
𝜕𝑤0

(1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2)

𝜕𝑅sq
𝜕𝑤0

= 1𝑛
𝑛
∑
𝑖=1

𝜕
𝜕𝑤0

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2

𝜕𝑅sq
𝜕𝑤0

= 2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕
𝜕𝑤0

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕𝑅sq
𝜕𝑤0

= −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤0

= 𝜕
𝜕𝑤0

(1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2)

𝜕𝑅sq
𝜕𝑤0

= 1𝑛
𝑛
∑
𝑖=1

𝜕
𝜕𝑤0

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2

𝜕𝑅sq
𝜕𝑤0

= 2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕
𝜕𝑤0

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕𝑅sq
𝜕𝑤0

= −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

Discussion Question

Choose the expression that equals
𝜕𝑅sq
𝜕𝑤1

.

a) 1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

b) −1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

c) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖

d) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

Discussion Question

Choose the expression that equals
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.
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𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))
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𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤1

= 𝜕
𝜕𝑤1

(1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2)

𝜕𝑅sq
𝜕𝑤1

= 1𝑛
𝑛
∑
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𝜕
𝜕𝑤1
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𝑛
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𝜕
𝜕𝑤1

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕𝑅sq
𝜕𝑤1

= 2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))(−𝑥𝑖)

𝜕𝑅sq
𝜕𝑤1

= −2𝑛
𝑛
∑
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1
𝑛

𝑛
∑
𝑖=1
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2
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(1𝑛
𝑛
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𝑛
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𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤1

= 𝜕
𝜕𝑤1

(1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2)

𝜕𝑅sq
𝜕𝑤1

= 1𝑛
𝑛
∑
𝑖=1

𝜕
𝜕𝑤1

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2

𝜕𝑅sq
𝜕𝑤1

= 2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕
𝜕𝑤1

(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

𝜕𝑅sq
𝜕𝑤1

= 2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))(−𝑥𝑖)

𝜕𝑅sq
𝜕𝑤1

= −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))𝑥𝑖



Strategy

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0 − 2𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

1. Solve for 𝑤0 in first equation.
▶ The result becomes 𝑤∗0, since it is the “best intercept”.

2. Plug 𝑤∗0 into second equation, solve for 𝑤1.
▶ The result becomes 𝑤∗1, since it is the “best slope”.



Solve for w∗0

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔ −𝑛𝑤0 +
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖) = 0

⇔ 𝑤0 =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖)

⇔ 𝑤0 = (
1
𝑛

𝑛
∑
𝑖=1
𝑦𝑖) − 𝑤1(

1
𝑛

𝑛
∑
𝑖=1
𝑥𝑖) = 𝑦 − 𝑤1𝑥

where 𝑥 = 1
𝑛 ∑

𝑛
𝑖=1 𝑦𝑖 and 𝑦 =

1
𝑛 ∑𝑖=1 𝑦𝑖.



Solve for w∗0

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔ −𝑛𝑤0 +
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖) = 0

⇔ 𝑤0 =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖)

⇔ 𝑤0 = (
1
𝑛

𝑛
∑
𝑖=1
𝑦𝑖) − 𝑤1(

1
𝑛

𝑛
∑
𝑖=1
𝑥𝑖) = 𝑦 − 𝑤1𝑥

where 𝑥 = 1
𝑛 ∑

𝑛
𝑖=1 𝑦𝑖 and 𝑦 =

1
𝑛 ∑𝑖=1 𝑦𝑖.



Solve for w∗0

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔ −𝑛𝑤0 +
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖) = 0

⇔ 𝑤0 =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖)

⇔ 𝑤0 = (
1
𝑛

𝑛
∑
𝑖=1
𝑦𝑖) − 𝑤1(

1
𝑛

𝑛
∑
𝑖=1
𝑥𝑖) = 𝑦 − 𝑤1𝑥

where 𝑥 = 1
𝑛 ∑

𝑛
𝑖=1 𝑦𝑖 and 𝑦 =

1
𝑛 ∑𝑖=1 𝑦𝑖.



Solve for w∗0

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔ −𝑛𝑤0 +
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖) = 0

⇔ 𝑤0 =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖)

⇔ 𝑤0 = (
1
𝑛

𝑛
∑
𝑖=1
𝑦𝑖) − 𝑤1(

1
𝑛

𝑛
∑
𝑖=1
𝑥𝑖) = 𝑦 − 𝑤1𝑥

where 𝑥 = 1
𝑛 ∑

𝑛
𝑖=1 𝑦𝑖 and 𝑦 =

1
𝑛 ∑𝑖=1 𝑦𝑖.



Solve for w∗0

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0

⇔ −𝑛𝑤0 +
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖) = 0

⇔ 𝑤0 =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑤1𝑥𝑖)

⇔ 𝑤0 = (
1
𝑛

𝑛
∑
𝑖=1
𝑦𝑖) − 𝑤1(

1
𝑛

𝑛
∑
𝑖=1
𝑥𝑖) = 𝑦 − 𝑤1𝑥

where 𝑥 = 1
𝑛 ∑

𝑛
𝑖=1 𝑦𝑖 and 𝑦 =

1
𝑛 ∑𝑖=1 𝑦𝑖.



Solve for w∗1

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

⇔
𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − 𝑤0

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0

Replace 𝑤0 = 𝑦 − 𝑤1𝑥, we have:

⇔
𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − (𝑦 − 𝑤1𝑥)

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0



Solve for w∗1

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

⇔
𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − 𝑤0

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0

Replace 𝑤0 = 𝑦 − 𝑤1𝑥, we have:

⇔
𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − (𝑦 − 𝑤1𝑥)

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0



Solve for w∗1

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

⇔
𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − 𝑤0

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0

Replace 𝑤0 = 𝑦 − 𝑤1𝑥, we have:

⇔
𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − (𝑦 − 𝑤1𝑥)

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0



Solve for w∗1

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

⇔
𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − 𝑤0

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0

Replace 𝑤0 = 𝑦 − 𝑤1𝑥, we have:

⇔
𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − (𝑦 − 𝑤1𝑥)

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0



Solve for w∗1
We have:

𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − 𝑦

𝑛
∑
𝑖=1
𝑥𝑖 + 𝑤1𝑥

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦)𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥)𝑥𝑖 = 0

⇔ 𝑤1 =
∑𝑛𝑖=1(𝑦𝑖 − 𝑦)𝑥𝑖
∑𝑛𝑖=1(𝑥𝑖 − 𝑥)𝑥𝑖



Solve for w∗1
We have:

𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − 𝑦

𝑛
∑
𝑖=1
𝑥𝑖 + 𝑤1𝑥

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦)𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥)𝑥𝑖 = 0

⇔ 𝑤1 =
∑𝑛𝑖=1(𝑦𝑖 − 𝑦)𝑥𝑖
∑𝑛𝑖=1(𝑥𝑖 − 𝑥)𝑥𝑖



Solve for w∗1
We have:

𝑛
∑
𝑖=1
𝑦𝑖𝑥𝑖 − 𝑦

𝑛
∑
𝑖=1
𝑥𝑖 + 𝑤1𝑥

𝑛
∑
𝑖=1
𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
𝑥2𝑖 = 0

⇔
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦)𝑥𝑖 − 𝑤1

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥)𝑥𝑖 = 0

⇔ 𝑤1 =
∑𝑛𝑖=1(𝑦𝑖 − 𝑦)𝑥𝑖
∑𝑛𝑖=1(𝑥𝑖 − 𝑥)𝑥𝑖



Least squares solutions

▶ We’ve found that the values 𝑤∗0 and 𝑤∗1 that minimize the
function 𝑅𝑠𝑞(𝑤0, 𝑤1) =

1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2 are

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)𝑥𝑖

𝑤∗0 = �̄� − 𝑤∗1�̄�

where

�̄� = 1𝑛
𝑛
∑
𝑖=1
𝑥𝑖 �̄� = 1𝑛

𝑛
∑
𝑖=1
𝑦𝑖

▶ Let’s re-write the slope 𝑤∗1 to be a bit more symmetric.



Key fact
The sum of deviations from the mean for any dataset is 0.

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�) = 0

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�) = 0

Proof:

From definition, we have:

𝑥 = 1𝑛
𝑛
∑
𝑖=1
𝑥𝑖

⇔ 𝑛𝑥 =
𝑛
∑
𝑖=1
𝑥𝑖 ⇔

𝑛
∑
𝑖=1
𝑥 =

𝑛
∑
𝑖=1
𝑥𝑖 ⇔

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥) = 0.

Similarly for 𝑦.



Key fact
The sum of deviations from the mean for any dataset is 0.

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�) = 0

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�) = 0

Proof:
From definition, we have:

𝑥 = 1𝑛
𝑛
∑
𝑖=1
𝑥𝑖

⇔ 𝑛𝑥 =
𝑛
∑
𝑖=1
𝑥𝑖 ⇔

𝑛
∑
𝑖=1
𝑥 =

𝑛
∑
𝑖=1
𝑥𝑖 ⇔

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥) = 0.

Similarly for 𝑦.



Key fact
The sum of deviations from the mean for any dataset is 0.

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�) = 0

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�) = 0

Proof:
From definition, we have:

𝑥 = 1𝑛
𝑛
∑
𝑖=1
𝑥𝑖

⇔ 𝑛𝑥 =
𝑛
∑
𝑖=1
𝑥𝑖

⇔
𝑛
∑
𝑖=1
𝑥 =

𝑛
∑
𝑖=1
𝑥𝑖 ⇔

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥) = 0.

Similarly for 𝑦.



Key fact
The sum of deviations from the mean for any dataset is 0.

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�) = 0

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�) = 0

Proof:
From definition, we have:

𝑥 = 1𝑛
𝑛
∑
𝑖=1
𝑥𝑖

⇔ 𝑛𝑥 =
𝑛
∑
𝑖=1
𝑥𝑖 ⇔

𝑛
∑
𝑖=1
𝑥 =

𝑛
∑
𝑖=1
𝑥𝑖

⇔
𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥) = 0.

Similarly for 𝑦.



Key fact
The sum of deviations from the mean for any dataset is 0.

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�) = 0

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�) = 0

Proof:
From definition, we have:

𝑥 = 1𝑛
𝑛
∑
𝑖=1
𝑥𝑖

⇔ 𝑛𝑥 =
𝑛
∑
𝑖=1
𝑥𝑖 ⇔

𝑛
∑
𝑖=1
𝑥 =

𝑛
∑
𝑖=1
𝑥𝑖 ⇔

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥) = 0.

Similarly for 𝑦.



Equivalent formula for w∗1
Claim

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)𝑥𝑖

=

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

Proof:

Because ∑𝑛𝑖=1(𝑥𝑖 − 𝑥) = 0, we have:

−𝑥
𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥) = 0

Because ∑𝑛𝑖=1(𝑦𝑖 − 𝑦) = 0, we have:

−𝑥
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦) = 0



Equivalent formula for w∗1
Claim

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)𝑥𝑖

=

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

Proof: Because ∑𝑛𝑖=1(𝑥𝑖 − 𝑥) = 0, we have:

−𝑥
𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥) = 0

Because ∑𝑛𝑖=1(𝑦𝑖 − 𝑦) = 0, we have:

−𝑥
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦) = 0



Equivalent formula for w∗1
Claim

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)𝑥𝑖

=

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

Proof: Because ∑𝑛𝑖=1(𝑥𝑖 − 𝑥) = 0, we have:

−𝑥
𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥) = 0

Because ∑𝑛𝑖=1(𝑦𝑖 − 𝑦) = 0, we have:

−𝑥
𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦) = 0



Equivalent formula for w∗1
Proof (continued):
We have:

𝑤1 =
∑𝑛𝑖=1(𝑦𝑖 − 𝑦)𝑥𝑖
∑𝑛𝑖=1(𝑥𝑖 − 𝑥)𝑥𝑖

=
∑𝑛𝑖=1(𝑦𝑖 − 𝑦)𝑥𝑖 + 0
∑𝑛𝑖=1(𝑥𝑖 − 𝑥)𝑥𝑖 + 0

Thus:

𝑤1 =
∑𝑛𝑖=1(𝑦𝑖 − 𝑦)𝑥𝑖−𝑥 ∑

𝑛
𝑖=1(𝑦𝑖 − 𝑦)

∑𝑛𝑖=1(𝑥𝑖 − 𝑥)𝑥𝑖−𝑥 ∑
𝑛
𝑖=1(𝑥𝑖 − 𝑥)

Therefore:

𝑤1 =
∑𝑛𝑖=1(𝑦𝑖 − 𝑦)(𝑥𝑖 − 𝑥)
∑𝑛𝑖=1(𝑥𝑖 − 𝑥)2

.



Least squares solutions

▶ The least squares solutions for the slope 𝑤∗1 and intercept
𝑤∗0 are:

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

𝑤∗0 = �̄� − 𝑤1�̄�

▶ We also say that 𝑤∗0 and 𝑤∗1 are optimal parameters.

▶ To make predictions about the future, we use the
prediction rule

𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥



Example
�̄� =

�̄� =

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

=

𝑤∗0 = �̄� − 𝑤1�̄� =

𝑥𝑖 𝑦𝑖 (𝑥𝑖 − �̄�) (𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)2

3 7
4 3
8 2

Optional homework: Write a Python/MATLAB/C++ program to
compute 𝑤∗1 and 𝑤∗0 given any data {(𝑥𝑖, 𝑦𝑖)}

𝑛
𝑖=1.



Summary



Summary, next time
▶ We introduced the linear prediction rule, 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.

▶ To determine the best choice of slope (𝑤1) and intercept
(𝑤0), we chose the squared loss function (𝑦𝑖 − 𝐻(𝑥𝑖))2 and
minimized empirical risk 𝑅𝑠𝑞(𝑤0, 𝑤1):

𝑅𝑠𝑞(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ After solving for 𝑤∗0 and 𝑤∗1 through partial differentiation,
we have a prediction rule 𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥 that we can use
to make predictions about the future.

▶ Next time: Revisiting correlation from DSC 10. Revisiting
gradient descent. Introducing a linear algebraic
formulation of linear regression.


