Lecture 7 - Simple Linear Regression (continued)

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Announcements

- Don't forget to submit your homework!
- Look at the readings linked on the course website!
- Groupwork Relsease Day: Thursday afternoon Groupwork Submission Day: Monday midnight Homework Release Day: Friday after lecture Homework Submission Day: Friday before lecture
\checkmark See dsc40a.com/calendar for the Office Hours schedule.

Agenda

- Recap of prediction rules.

Simple linear regression.

How do we predict someone's salary?

After collecting salary data, we...

1. Choose a loss function.
2. Find the best prediction by minimizing empirical risk.

- So far, we've been predicting future salaries without using any information about the individual (e.g. GPA, years of experience, number of LinkedIn connections).
- New focus: How do we incorporate this information into our prediction-making process?

Features

A feature is an attribute - a piece of information.

- Numerical: age, height, years of experience
- Categorical: college, city, education level
- Boolean: knows Python?, had internship?

Think of features as columns in a DataFrame (i.e. table).

| | YearsExperience | Age | FormalEducation | Salary |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 6.37 | 28.39 | Master's degree (MA, MS, M.Eng., MBA, etc.) | 120000.0 |
| $\mathbf{1}$ | 0.35 | 25.78 | Some college/university study without earning ... | 120000.0 |
| $\mathbf{2}$ | 4.05 | 31.04 | Bachelor's degree (BA, BS, B.Eng., etc.) | 70000.0 |
| $\mathbf{3}$ | 18.48 | 38.78 | Bachelor's degree (BA, BS, B.Eng., etc.) | 185000.0 |
| $\mathbf{4}$ | 4.95 | 33.45 | Master's degree (MA, MS, M.Eng., MBA, etc.) | 125000.0 |

Variables

- The features, x, that we base our predictions on are called predictor variables.
- The quantity, y, that we're trying to predict based on these features is called the response variable.
- We'll start by predicting salary based on years of experience.

Prediction rules

\Rightarrow We believe that salary is a function of experience.

- In other words, we think that there is a function H such that:

$$
\text { salary } \approx H \text { (years of experience) }
$$

- H is called a hypothesis function or prediction rule.
- Our goal: find a good prediction rule, H.

Comparing predictions

\Rightarrow How do we know which prediction rule is best: H_{1}, H_{2}, H_{3} ?
\Rightarrow We gather data from n people. Let x_{i} be experience, y_{i} be salary:

(Experience $_{1}$, Salary $\left._{1}\right)$		
$\left(\right.$ Experience $_{2}$, Salary $\left._{2}\right)$		
\ldots		$\left(x_{1}, y_{1}\right)$
$\left(\right.$ Experience $_{n}$, Salary $\left._{n}\right)$		$\left(x_{2}, y_{2}\right)$
\ldots		
		$\left(x_{n}, y_{n}\right)$

- See which rule works better on data.

Example

Quantifying the quality of a prediction rule H

- Our prediction for person i's salary is $H\left(x_{i}\right)$.
- As before, we'll use a loss function to quantify the quality of our predictions.
- Absolute loss: $\left|y_{i}-H\left(x_{i}\right)\right|$.
- Squared loss: $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$.
- We'll use squared loss, since it's differentiable.
- Using squared loss, the empirical risk (mean squared error) of the prediction rule H is:

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

Finding the best prediction rule

- Goal: out of all functions $\mathbb{R} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error.
\Rightarrow That is, H^{*} should be the function that minimizes

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- There's a problem.

Discussion Question

Given the data above, is there a prediction rule H which has zero mean squared error?
a) Yes b) No

Discussion Question

Given the data above, is there a prediction rule H which has zero mean squared error?
a) Yes b) No

Answer: Yes

Lagrange interpolation (polynomial)

The degree of the polynomial is exactly the number of data points

Lagrange interpolation (polynomial)

The degree of the polynomial is exactly the number of data points

Problem

- We can make mean squared error very small, even zero!
- But the function will be weird.

This is called overfitting.

- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
- Linear: $H(x)=w_{0}+w_{1} x$.
\Rightarrow Quadratic: $H(x)=w_{0}+w_{1} x_{1}+w_{2} x^{2}$.
\Rightarrow Exponential: $H(x)=w_{0} e^{w_{1} x}$.
\Rightarrow Constant: $H(x)=w_{0}$.

Finding the best linear prediction rule

- Goal: out of all linear functions $\mathbb{R} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error.
- Linear functions are of the form $H(x)=w_{0}+w_{1} x$.
\Rightarrow They are defined by a slope $\left(w_{1}\right)$ and intercept $\left(w_{0}\right)$.
\Rightarrow That is, H^{*} should be the linear function that minimizes

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- This problem is called least squares regression.
- "Simple linear regression" refers to linear regression with a single predictor variable.

Minimizing mean squared error for the linear prediction rule

Minimizing the mean squared error

\Rightarrow The MSE is a function $R_{\text {sq }}$ of a function H.

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

\Rightarrow But since H is linear, we know $H\left(x_{i}\right)=w_{0}+w_{1} x_{i}$.

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

\Rightarrow Now $R_{\text {sq }}$ is a function of w_{0} and w_{1}.
\Rightarrow We call w_{0} and w_{1} parameters.

- Parameters define our prediction rule.

Updated goal

- Find the slope w_{1}^{*} and intercept w_{0}^{*} that minimize the MSE, $R_{\text {sq }}\left(w_{0}, w_{1}\right)$:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- Strategy: multivariable calculus.

Recall: the gradient

- If $f(x, y)$ is a function of two variables, the gradient of f at the point $\left(x_{0}, y_{0}\right)$ is a vector of partial derivatives:

$$
\nabla f\left(x_{0}, y_{0}\right)=\binom{\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)}{\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)}
$$

$>$ Key Fact \#1: The derivative is to the tangent line as the gradient is to the tangent plane.

- Key Fact \#2: The gradient points in the direction of the biggest increase.
- Key Fact \#3: The gradient is zero at critical points.

Strategy

To minimize $R\left(w_{0}, w_{1}\right)$: compute the gradient, set it equal to zero, and solve.

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Discussion Question

Choose the expression that equals $\frac{\partial R_{s q}}{\partial w_{0}}$.
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
b) $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
c) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
d) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Discussion Question

Choose the expression that equals $\frac{\partial R_{s q}}{\partial w_{0}}$.
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
b) $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
c) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
d) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=\frac{\partial}{\partial w_{0}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=\frac{\partial}{\partial w_{0}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{0}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=\frac{\partial}{\partial w_{0}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{0}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \frac{\partial}{\partial w_{0}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=\frac{\partial}{\partial w_{0}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{0}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \frac{\partial}{\partial w_{0}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)
\end{aligned}
$$

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Discussion Question

Choose the expression that equals $\frac{\partial R_{s q}}{\partial w_{1}}$.
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
b) $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
c) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
d) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Discussion Question

Choose the expression that equals $\frac{\partial R_{s q}}{\partial w_{1}}$.
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
b) $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
c) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
d) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{\partial}{\partial w_{1}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{\partial}{\partial w_{1}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{\partial}{\partial w_{1}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \frac{\partial}{\partial w_{1}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{\partial}{\partial w_{1}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \frac{\partial}{\partial w_{1}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)\left(-x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{\partial}{\partial w_{1}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \frac{\partial}{\partial w_{1}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)\left(-x_{i}\right) \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}
\end{aligned}
$$

Strategy

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \quad-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

1. Solve for w_{0} in first equation.

- The result becomes w_{0}^{*}, since it is the "best intercept".

2. Plug w_{0}^{*} into second equation, solve for w_{1}.
\Rightarrow The result becomes w_{1}^{*}, since it is the "best slope".

Solve for w_{0}^{*}

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0
$$

Solve for w_{0}^{*}

$$
\begin{aligned}
& -\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \\
& \Leftrightarrow \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0
\end{aligned}
$$

Solve for w_{0}^{*}

$$
\begin{aligned}
& -\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \\
& \Leftrightarrow \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \\
& \Leftrightarrow-n w_{0}+\sum_{i=1}^{n}\left(y_{i}-w_{1} x_{i}\right)=0
\end{aligned}
$$

Solve for w_{0}^{*}

$$
\begin{aligned}
& -\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \\
& \Leftrightarrow \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \\
& \Leftrightarrow-n w_{0}+\sum_{i=1}^{n}\left(y_{i}-w_{1} x_{i}\right)=0 \\
& \Leftrightarrow w_{0}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{1} x_{i}\right)
\end{aligned}
$$

Solve for w_{0}^{*}

$$
\begin{gathered}
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \\
\Leftrightarrow \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \\
\Leftrightarrow-n w_{0}+\sum_{i=1}^{n}\left(y_{i}-w_{1} x_{i}\right)=0 \\
\Leftrightarrow w_{0}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{1} x_{i}\right) \\
\Leftrightarrow w_{0}=\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}\right)-w_{1}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)=\bar{y}-w_{1} \bar{x}
\end{gathered}
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ and $\bar{y}=\frac{1}{n} \sum_{i=1} y_{i}$.

Solve for w_{1}^{*}

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

Solve for w_{1}^{*}

$$
\begin{aligned}
& -\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0 \\
& \Leftrightarrow \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Solve for w_{1}^{*}

$$
\begin{gathered}
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0 \\
\Leftrightarrow \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0 \\
\Leftrightarrow \sum_{i=1}^{n} y_{i} x_{i}-w_{0} \sum_{i=1}^{n} x_{i}-w_{1} \sum_{i=1}^{n} x_{i}^{2}=0
\end{gathered}
$$

Replace $w_{0}=\bar{y}-w_{1} \bar{x}$, we have:

Solve for w_{1}^{*}

$$
\begin{gathered}
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0 \\
\Leftrightarrow \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0 \\
\Leftrightarrow \sum_{i=1}^{n} y_{i} x_{i}-w_{0} \sum_{i=1}^{n} x_{i}-w_{1} \sum_{i=1}^{n} x_{i}^{2}=0
\end{gathered}
$$

Replace $w_{0}=\bar{y}-w_{1} \bar{x}$, we have:

$$
\Leftrightarrow \sum_{i=1}^{n} y_{i} x_{i}-\left(\bar{y}-w_{1} \bar{x}\right) \sum_{i=1}^{n} x_{i}-w_{1} \sum_{i=1}^{n} x_{i}^{2}=0
$$

Solve for w_{1}^{*}

We have:

$$
\sum_{i=1}^{n} y_{i} x_{i}-\bar{y} \sum_{i=1}^{n} x_{i}+w_{1} \bar{x} \sum_{i=1}^{n} x_{i}-w_{1} \sum_{i=1}^{n} x_{i}^{2}=0
$$

Solve for w_{1}^{*}

We have:

$$
\begin{gathered}
\sum_{i=1}^{n} y_{i} x_{i}-\bar{y} \sum_{i=1}^{n} x_{i}+w_{1} \bar{x} \sum_{i=1}^{n} x_{i}-w_{1} \sum_{i=1}^{n} x_{i}^{2}=0 \\
\Leftrightarrow \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}-w_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}=0
\end{gathered}
$$

Solve for w_{1}^{*}

We have:

$$
\begin{gathered}
\sum_{i=1}^{n} y_{i} x_{i}-\bar{y} \sum_{i=1}^{n} x_{i}+w_{1} \bar{x} \sum_{i=1}^{n} x_{i}-w_{1} \sum_{i=1}^{n} x_{i}^{2}=0 \\
\Leftrightarrow \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}-w_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}=0 \\
\Leftrightarrow w_{1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}
\end{gathered}
$$

Least squares solutions

\Rightarrow We've found that the values w_{0}^{*} and w_{1}^{*} that minimize the function $R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$ are

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

where

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- Let's re-write the slope w_{1}^{*} to be a bit more symmetric.

Key fact

The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:

Key fact

The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:
From definition, we have:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Key fact

The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:
From definition, we have:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

$$
\Leftrightarrow n \bar{x}=\sum_{i=1}^{n} x_{i}
$$

Key fact

The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:
From definition, we have:

$$
\begin{array}{r}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\Leftrightarrow n \bar{x}=\sum_{i=1}^{n} x_{i} \Leftrightarrow \sum_{i=1}^{n} \bar{x}=\sum_{i=1}^{n} x_{i}
\end{array}
$$

Key fact

The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:
From definition, we have:

$$
\begin{gathered}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\Leftrightarrow n \bar{x}=\sum_{i=1}^{n} x_{i} \Leftrightarrow \sum_{i=1}^{n} \bar{x}=\sum_{i=1}^{n} x_{i} \Leftrightarrow \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0
\end{gathered}
$$

Similarly for \bar{y}.

Equivalent formula for w_{1}^{*}

Claim

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof:

Equivalent formula for w_{1}^{*}

Claim

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof: Because $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$, we have:

$$
-\bar{x} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0
$$

Equivalent formula for w_{1}^{*}

Claim

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof: Because $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$, we have:

$$
-\bar{x} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0
$$

Because $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0$, we have:

$$
-\bar{x} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Equivalent formula for w_{1}^{*}

Proof (continued):
We have:

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}+0}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}+0}
$$

Thus:

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}-\bar{x} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}-\bar{x} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}
$$

Therefore:

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
$$

Least squares solutions

\Rightarrow The least squares solutions for the slope w_{1}^{*} and intercept w_{0}^{*} are:

$$
w_{1}^{\star}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1} \bar{x}
$$

- We also say that w_{0}^{*} and w_{1}^{*} are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$
H^{*}(x)=w_{0}^{\star}+w_{1}^{*} x
$$

Example

Optional homework: Write a Python/MATLAB/C++ program to compute w_{1}^{*} and w_{0}^{*} given any data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$.

Summary

Summary, next time

\Rightarrow We introduced the linear prediction rule, $H(x)=w_{0}+w_{1} x$.
\Rightarrow To determine the best choice of slope (w_{1}) and intercept $\left(w_{0}\right)$, we chose the squared loss function $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$ and minimized empirical risk $R_{\text {sq }}\left(w_{0}, w_{1}\right)$:

$$
R_{s q}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- After solving for w_{0}^{*} and w_{1}^{*} through partial differentiation, we have a prediction rule $H^{*}(x)=w_{0}^{*}+w_{1}^{*} x$ that we can use to make predictions about the future.
- Next time: Revisiting correlation from DSC 10. Revisiting gradient descent. Introducing a linear algebraic formulation of linear regression.

