Lecture 8 - Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego

Announcements

- Groupwork 2 is due Today at 23:59pm.
- HW 2 is due Friday 10/14 at 2:00pm.
- Midterm: 10/28 during class time.
- Friday, 3-4PM, 4-5 PCYYNH 122.

Recap: Prediction Rule

Agenda

- Recap of gradient descent.
- Prediction rules.
- Minimizing mean squared error, again.

Finding the best prediction rule

- Goal: out of all functions $\mathbb{R} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error.
\Rightarrow That is, H^{*} should be the function that minimizes

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- There's a problem.

Problem

- We can make mean squared error very small, even zero!
- But the function will be weird.

This is called overfitting.

- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
- Linear: $H(x)=w_{0}+w_{1} x$.
\Rightarrow Quadratic: $H(x)=w_{0}+w_{1} x_{1}+w_{2} x^{2}$.
\Rightarrow Exponential: $H(x)=w_{0} e^{w_{1} x}$.
\Rightarrow Constant: $H(x)=w_{0}$.

Finding the best linear prediction rule

- Goal: out of all linear functions $\mathbb{R} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error.
- Linear functions are of the form $H(x)=w_{0}+w_{1} x$.
\Rightarrow They are defined by a slope $\left(w_{1}\right)$ and intercept $\left(w_{0}\right)$.
\Rightarrow That is, H^{*} should be the linear function that minimizes

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- This problem is called least squares regression.
- "Simple linear regression" refers to linear regression with a single predictor variable.

Minimizing mean squared error for the linear prediction rule

Minimizing the mean squared error

\Rightarrow The MSE is a function $R_{\text {sq }}$ of a function H.

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

\Rightarrow But since H is linear, we know $H\left(x_{i}\right)=w_{0}+w_{1} x_{i}$.

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

\Rightarrow Now $R_{\text {sq }}$ is a function of w_{0} and w_{1}.
\Rightarrow We call w_{0} and w_{1} parameters.

- Parameters define our prediction rule.

Updated goal

- Find the slope w_{1}^{*} and intercept w_{0}^{*} that minimize the MSE, $R_{\text {sq }}\left(w_{0}, w_{1}\right)$:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- Strategy: multivariable calculus.

Recall: the gradient

- If $f(x, y)$ is a function of two variables, the gradient of f at the point $\left(x_{0}, y_{0}\right)$ is a vector of partial derivatives:

$$
\nabla f\left(x_{0}, y_{0}\right)=\binom{\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)}{\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)}
$$

$>$ Key Fact \#1: The derivative is to the tangent line as the gradient is to the tangent plane.

- Key Fact \#2: The gradient points in the direction of the biggest increase.
- Key Fact \#3: The gradient is zero at critical points.

Strategy

To minimize $R\left(w_{0}, w_{1}\right)$: compute the gradient, set it equal to zero, and solve.
$R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$

Discussion Question

Choose the expression that equals $\frac{\partial R_{\text {sq }}}{\partial w_{0}}$.
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
b) $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
c) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
d) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

Go to menti. com and enter the code 48215997.

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=
\end{aligned}
$$

Strategy

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \quad-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

1. Solve for w_{0} in first equation.

- The result becomes w_{0}^{*}, since it is the "best intercept".

2. Plug w_{0}^{*} into second equation, solve for w_{1}.
\Rightarrow The result becomes w_{1}^{*}, since it is the "best slope".

Solve for w_{0}^{*}
$-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0$

Solve for w_{1}^{*}

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

Least squares solutions

\Rightarrow We've found that the values w_{0}^{*} and w_{1}^{*} that minimize the function $R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$ are

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

where

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- Let's re-write the slope w_{1}^{*} to be a bit more symmetric.

Key fact

The sum of deviations from the mean for any dataset is 0 .

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0 \quad \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0
$$

Proof:

Equivalent formula for w_{1}^{*}

Claim

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof:

Least squares solutions

\Rightarrow The least squares solutions for the slope w_{1}^{*} and intercept w_{0}^{*} are:

$$
w_{1}^{\star}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1} \bar{x}
$$

- We also say that w_{0}^{*} and w_{1}^{*} are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$
H^{*}(x)=w_{0}^{\star}+w_{1}^{*} x
$$

Example

$$
\begin{array}{llllll}
\hline x_{i} & y_{i} & \left(x_{i}-\bar{x}\right) & \left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)^{2} \\
\hline 3 & 7 & & & & \\
4 & 3 & & & & \\
8 & 2 & & & &
\end{array}
$$

Summary

- We introduced prediction rule framework to incorporate features in our predictions.
- We introduced the linear prediction rule, $H(x)=w_{0}+w_{1} x$.
- To determine the best choice of slope $\left(w_{1}\right)$ and intercept $\left(w_{0}\right)$, we chose the squared loss function $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$ and minimized empirical risk $R_{s q}\left(w_{0}, w_{1}\right)$:

$$
R_{s q}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- After solving for w_{0}^{*} and w_{1}^{*} through partial differentiation, we have a prediction rule $H^{*}(x)=w_{0}^{*}+w_{1}^{*} x$ that we can use to make predictions about the future.

