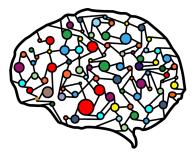
# Lecture 8 - Simple Linear Regression



DSC 40A, Fall 2022 @ UC San Diego

#### Announcements

- Groupwork 2 is due Today at 23:59pm.
- HW 2 is due Friday 10/14 at 2:00pm.
- Midterm: 10/28 during class time.
  - Friday, 3-4PM, 4-5 PCYYNH 122.

**Recap: Prediction Rule** 

# Agenda

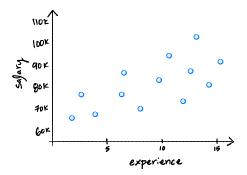
- Recap of gradient descent.
- Prediction rules.
- Minimizing mean squared error, again.

# Finding the best prediction rule

- ▶ **Goal:** out of all functions  $\mathbb{R} \to \mathbb{R}$ , find the function  $H^*$  with the smallest mean squared error.
- ▶ That is, *H*<sup>\*</sup> should be the function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

▶ There's a problem.



# Problem

- ▶ We can make mean squared error very small, even zero!
- But the function will be weird.
- This is called overfitting.
- Remember our real goal: make good predictions on data we haven't seen.

# Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
  - Linear:  $H(x) = w_0 + w_1 x$ .
  - Quadratic:  $H(x) = w_0 + w_1 x_1 + w_2 x^2$ .
  - Exponential:  $H(x) = w_0 e^{w_1 x}$ .
  - Constant:  $H(x) = w_0$ .

# Finding the best linear prediction rule

▶ **Goal:** out of all **linear** functions  $\mathbb{R} \to \mathbb{R}$ , find the function  $H^*$  with the smallest mean squared error.

Linear functions are of the form  $H(x) = w_0 + w_1 x$ .

• They are defined by a slope  $(w_1)$  and intercept  $(w_0)$ .

That is, H\* should be the linear function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

- This problem is called least squares regression.
  - "Simple linear regression" refers to linear regression with a single predictor variable.

# Minimizing mean squared error for the linear prediction rule

# Minimizing the mean squared error

• The MSE is a function  $R_{sq}$  of a function *H*.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

But since H is linear, we know  $H(x_i) = w_0 + w_1 x_i$ .

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Now  $R_{sq}$  is a function of  $w_0$  and  $w_1$ .

- We call  $w_0$  and  $w_1$  parameters.
  - Parameters define our prediction rule.

# **Updated goal**

Find the slope  $w_1^*$  and intercept  $w_0^*$  that minimize the MSE,  $R_{sq}(w_0, w_1)$ :

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Strategy: multivariable calculus.

# **Recall: the gradient**

If f(x, y) is a function of two variables, the gradient of f at the point (x<sub>0</sub>, y<sub>0</sub>) is a vector of partial derivatives:

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}$$

- Key Fact #1: The derivative is to the tangent line as the gradient is to the tangent plane.
- Key Fact #2: The gradient points in the direction of the biggest increase.
- **Key Fact #3**: The gradient is zero at critical points.

# Strategy

To minimize  $R(w_0, w_1)$ : compute the gradient, set it equal to zero, and solve.

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

#### **Discussion Question**

Choose the expression that equals 
$$\frac{\partial R_{sq}}{\partial w_0}$$
.

a) 
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$
  
b)  $-\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$   
c)  $-\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i$ 

Go to menti.com and enter the code 4821 5997.

$$\begin{split} R_{\rm sq}(w_0,w_1) &= \frac{1}{n} \sum_{i=1}^n \left( y_i - (w_0 + w_1 x_i) \right)^2 \\ \frac{\partial R_{\rm sq}}{\partial w_0} &= \end{split}$$

$$\begin{split} R_{\rm sq}(w_0,w_1) &= \frac{1}{n} \sum_{i=1}^n \left( y_i - (w_0 + w_1 x_i) \right)^2 \\ \frac{\partial R_{\rm sq}}{\partial w_1} &= \end{split}$$

## Strategy

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)=0 \qquad -\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)x_{i}=0$$

1. Solve for  $w_0$  in first equation.

• The result becomes  $w_0^*$ , since it is the "best intercept".

#### 2. Plug $w_0^*$ into second equation, solve for $w_1$ .

• The result becomes  $w_1^*$ , since it is the "best slope".

# Solve for $w_0^*$

$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) = 0$$

# Solve for $w_1^*$

$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i = 0$$

## Least squares solutions

► We've found that the values  $w_0^*$  and  $w_1^*$  that minimize the function  $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$  are

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
  $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ 

• Let's re-write the slope  $w_1^*$  to be a bit more symmetric.

# Key fact

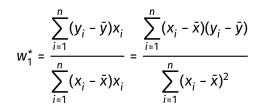
#### The sum of deviations from the mean for any dataset is 0.

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

Proof:

# Equivalent formula for $w_1^*$

Claim



Proof:

# Least squares solutions

The least squares solutions for the slope w<sub>1</sub><sup>\*</sup> and intercept w<sub>0</sub><sup>\*</sup> are:

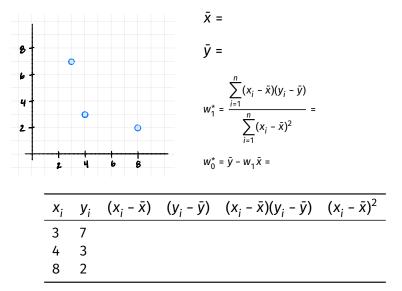
$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \qquad w_0^* = \bar{y} - w_1 \bar{x}$$

• We also say that  $w_0^*$  and  $w_1^*$  are **optimal parameters**.

To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

# Example



# Summary

- We introduced prediction rule framework to incorporate features in our predictions.
- We introduced the linear prediction rule,  $H(x) = w_0 + w_1 x$ .
- ► To determine the best choice of slope  $(w_1)$  and intercept  $(w_0)$ , we chose the squared loss function  $(y_i H(x_i))^2$  and minimized empirical risk  $R_{sa}(w_0, w_1)$ :

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

After solving for  $w_0^*$  and  $w_1^*$  through partial differentiation, we have a prediction rule  $H^*(x) = w_0^* + w_1^* x$  that we can use to make predictions about the future.