Lecture 8 - Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego



Announcements

Groupwork 2 is due Today at 23:59pm.
HW 2 is due Friday 10/14 at 2:00pm.

Midterm: 10/28 during class time.
Friday, 3-4PM, 4-5 PCYYNH 122.



Recap: Prediction Rule



Agenda

Recap of gradient descent.
Prediction rules.

Minimizing mean squared error, again.



Finding the best prediction rule

Goal: out of all functions R = R, find the function H* with
the smallest mean squared error.

That is, H* should be the function that minimizes
n
X
n i=1

There’s a problem.
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Problem

We can make mean squared error very small, even zero!
But the function will be weird.

This is called overfitting.

Remember our real goal: make good predictions on data
we haven't seen.



Solution

Don’t allow H to be just any function.
Require that it has a certain form.

Examples:
Linear: H(x) = w, + w, X.
Quadratic: H(x) = w, + W, X, + W, X2,
Exponential: H(x) = wye"*.
Constant: H(x) = w,,.



Finding the best linear prediction rule

Goal: out of all linear functions R — R, find the function
H* with the smallest mean squared error.

Linear functions are of the form H(x) = w, + w, x.

0

They are defined by a slope (w,) and intercept (w,).

That is, H* should be the linear function that minimizes

n

qu(H) = % Z (yi - H(Xi))2
i=1

This problem is called least squares regression.

“Simple linear regression” refers to linear regression
with a single predictor variable.



Minimizing mean squared error for the linear
prediction rule



Minimizing the mean squared error

The MSE is a function Ry, of a function H.

Rg(H) == > (v - H(x))

i=1

But since H is linear, we know H(x;) = w,, + w, X;.
1 < 2
_ = Z (W + W, X ))

Now R, is a function of w, and w,.

We call w, and w, parameters.
Parameters define our prediction rule.



Updated goal

Find the slope wj and intercept wy that minimize the MSE,

qu(wo,w1):

Strategy: multivariable calculus.



Recall: the gradient

If f(x,y) is a function of two variables, the gradient of f at
the point (x,, y,) is a vector of partial derivatives:

of
E(XO, yo)

of

Vf(XO, yo) =
E(XO' yo)

Key Fact #1: The derivative is to the tangent line as the
gradient is to the tangent plane.

Key Fact #2: The gradient points in the direction of the
biggest increase.

Key Fact #3: The gradient is zero at critical points.



Strategy

To minimize R(w,, w,): compute the gradient, set it equal to
zero, and solve.



n

Z(y (W, +w x))

1
n i=1

Discussion Question

3R,

Choose the expression that equals —.
ow,

qu(WOI W‘] ) =

d) '_Z( (W0+W1Xi))

i=1
Go to menti.com and enter the code 4821 5997.



menti.com

1 n
Req(Wo, w,) = n Z (v; = (wg +wyx, )2
i=1
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Ryq(Wo wy) = (vi - (wy + w,x;)




Strategy

i - (W +w, X)) = 0 i - (Wy + W, x;)) X, = 0

i=1 i=1
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Solve for w, in first equation.
The result becomes w, since it is the “best intercept”.

Plug wg into second equation, solve for w;.
The result becomes w7y, since it is the “best slope”.



Solve for w,

n
(v; - (wy + wyx;)) = 0
-
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Solve for w;

2 n
EZ Y; = (Wg +wy X)) x; = 0
i=1



Least squares solutions

We've found that the values wg and wj that minimize the

function R (wg, w,) = 157 (y; - (wy +w x)) are

where

) 1 n _ 1 n
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Let's re-write the slope wj to be a bit more symmetric.



Key fact

The sum of deviations from the mean for any dataset is 0.

D (X=%)=0 > (y-7)=0
i=1 i=1

Proof:



Equivalent formula for w;

Claim ;
D> Wi-9)x D (%=X -7)
i=1 i=1
W* = =

1 n n

> -Rx D (x-x)?

i=1 i=1

Proof:



Least squares solutions

The least squares solutions for the slope w} and intercept
wy are:
0

n
Z(X,' - )_()(y,' -y)
wy = il Wy =y - w,X

i(xi - )_()2
=

We also say that wy and wj are optimal parameters.

To make predictions about the future, we use the
prediction rule

H*(x) = wg + wix
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Summary



We introduced prediction rule framework to incorporate
features in our predictions.

We introduced the linear prediction rule, H(x) = w, + w, Xx.

To determine the best choice of slope (w1) and intercept

(w,), we chose the squared loss function (y, - H(x))* and
m|n|m|zed empirical risk R, (W w,):

n

Ryq(Wo, W) = % Z (yi - (W, +w, Xi))2

i=1

After solving for wy and wj through partial differentiation,

we have a prediction rule H*(x) = wg + w}x that we can use

to make predictions about the future.



