
Lecture 8 – Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego



Announcements
▶ Groupwork 2 is due Today at 23:59pm.

▶ HW 2 is due Friday 10/14 at 2:00pm.

▶ Midterm: 10/28 during class time.
▶ Friday, 3-4PM, 4-5 PCYYNH 122.



Recap: Prediction Rule



Agenda

▶ Recap of gradient descent.

▶ Prediction rules.

▶ Minimizing mean squared error, again.



Finding the best prediction rule

▶ Goal: out of all functions ℝ → ℝ, find the function 𝐻∗ with
the smallest mean squared error.

▶ That is, 𝐻∗ should be the function that minimizes

𝑅𝑠𝑞(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))

2

▶ There’s a problem.





Problem
▶ We can make mean squared error very small, even zero!

▶ But the function will be weird.

▶ This is called overfitting.

▶ Remember our real goal: make good predictions on data
we haven’t seen.



Solution
▶ Don’t allow 𝐻 to be just any function.

▶ Require that it has a certain form.

▶ Examples:
▶ Linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.
▶ Quadratic: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2.
▶ Exponential: 𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥 .
▶ Constant: 𝐻(𝑥) = 𝑤0.



Finding the best linear prediction rule

▶ Goal: out of all linear functions ℝ → ℝ, find the function
𝐻∗ with the smallest mean squared error.
▶ Linear functions are of the form 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.

▶ They are defined by a slope (𝑤1) and intercept (𝑤0).

▶ That is, 𝐻∗ should be the linear function that minimizes

𝑅𝑠𝑞(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))

2

▶ This problem is called least squares regression.
▶ “Simple linear regression” refers to linear regression
with a single predictor variable.



Minimizing mean squared error for the linear
prediction rule



Minimizing the mean squared error

▶ The MSE is a function 𝑅sq of a function 𝐻.

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))

2

▶ But since 𝐻 is linear, we know 𝐻(𝑥𝑖) = 𝑤0 + 𝑤1𝑥𝑖.

𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ Now 𝑅𝑠𝑞 is a function of 𝑤0 and 𝑤1.

▶ We call 𝑤0 and 𝑤1 parameters.
▶ Parameters define our prediction rule.



Updated goal

▶ Find the slope 𝑤∗1 and intercept 𝑤∗0 that minimize the MSE,
𝑅sq(𝑤0, 𝑤1):

𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ Strategy: multivariable calculus.



Recall: the gradient

▶ If 𝑓(𝑥, 𝑦) is a function of two variables, the gradient of 𝑓 at
the point (𝑥0, 𝑦0) is a vector of partial derivatives:

∇𝑓(𝑥0, 𝑦0) = (
𝜕𝑓
𝜕𝑥 (𝑥0, 𝑦0)
𝜕𝑓
𝜕𝑦 (𝑥0, 𝑦0)

)

▶ Key Fact #1: The derivative is to the tangent line as the
gradient is to the tangent plane.

▶ Key Fact #2: The gradient points in the direction of the
biggest increase.

▶ Key Fact #3: The gradient is zero at critical points.



Strategy
To minimize 𝑅(𝑤0, 𝑤1): compute the gradient, set it equal to
zero, and solve.



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

Discussion Question

Choose the expression that equals
𝜕𝑅sq
𝜕𝑤0

.

a) 1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

b) −1𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

c) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖

d) −2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

Go to menti.com and enter the code 4821 5997.

menti.com


𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤0

=



𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

𝜕𝑅sq
𝜕𝑤1

=



Strategy

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0 − 2𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0

1. Solve for 𝑤0 in first equation.
▶ The result becomes 𝑤∗0, since it is the “best intercept”.

2. Plug 𝑤∗0 into second equation, solve for 𝑤1.
▶ The result becomes 𝑤∗1, since it is the “best slope”.



Solve for w∗0

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0



Solve for w∗1

−2𝑛
𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0



Least squares solutions

▶ We’ve found that the values 𝑤∗0 and 𝑤∗1 that minimize the
function 𝑅𝑠𝑞(𝑤0, 𝑤1) =

1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2 are

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦̄)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)𝑥𝑖

𝑤∗0 = 𝑦̄ − 𝑤∗1𝑥̄

where

𝑥̄ = 1𝑛
𝑛
∑
𝑖=1
𝑥𝑖 𝑦̄ = 1𝑛

𝑛
∑
𝑖=1
𝑦𝑖

▶ Let’s re-write the slope 𝑤∗1 to be a bit more symmetric.



Key fact
The sum of deviations from the mean for any dataset is 0.

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄) = 0

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦̄) = 0

Proof:



Equivalent formula for w∗1
Claim

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝑦̄)𝑥𝑖

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)𝑥𝑖

=

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)2

Proof:



Least squares solutions

▶ The least squares solutions for the slope 𝑤∗1 and intercept
𝑤∗0 are:

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)2

𝑤∗0 = 𝑦̄ − 𝑤1𝑥̄

▶ We also say that 𝑤∗0 and 𝑤∗1 are optimal parameters.

▶ To make predictions about the future, we use the
prediction rule

𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥



Example
𝑥̄ =

𝑦̄ =

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥̄)2

=

𝑤∗0 = 𝑦̄ − 𝑤1𝑥̄ =

𝑥𝑖 𝑦𝑖 (𝑥𝑖 − 𝑥̄) (𝑦𝑖 − 𝑦̄) (𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄) (𝑥𝑖 − 𝑥̄)2

3 7
4 3
8 2



Summary



▶ We introduced prediction rule framework to incorporate
features in our predictions.

▶ We introduced the linear prediction rule, 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.

▶ To determine the best choice of slope (𝑤1) and intercept
(𝑤0), we chose the squared loss function (𝑦𝑖 − 𝐻(𝑥𝑖))2 and
minimized empirical risk 𝑅𝑠𝑞(𝑤0, 𝑤1):

𝑅𝑠𝑞(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ After solving for 𝑤∗0 and 𝑤∗1 through partial differentiation,
we have a prediction rule 𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥 that we can use
to make predictions about the future.


