
Lecture 8 – Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego



Announcements▶ Groupwork 2 is due Today at 23:59pm.▶ HW 2 is due Friday 10/14 at 2:00pm.▶ Midterm: 10/28 during class time.▶ Friday, 3-4PM, 4-5 PCYYNH 122.



Recap: Prediction Rule



Agenda▶ Recap of gradient descent.▶ Prediction rules.▶ Minimizing mean squared error, again.



Finding the best prediction rule▶ Goal: out of all functions ℝ → ℝ, find the function 𝐻∗ with
the smallest mean squared error.▶ That is, 𝐻∗ should be the function that minimizes𝑅𝑠𝑞(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2▶ There’s a problem.





Problem▶ We can make mean squared error very small, even zero!▶ But the function will be weird.▶ This is called overfitting.▶ Remember our real goal: make good predictions on data
we haven’t seen.



Solution▶ Don’t allow 𝐻 to be just any function.▶ Require that it has a certain form.▶ Examples:▶ Linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.▶ Quadratic: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2.▶ Exponential: 𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥 .▶ Constant: 𝐻(𝑥) = 𝑤0.



Finding the best linear prediction rule▶ Goal: out of all linear functions ℝ → ℝ, find the function𝐻∗ with the smallest mean squared error.▶ Linear functions are of the form 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.▶ They are defined by a slope (𝑤1) and intercept (𝑤0).▶ That is, 𝐻∗ should be the linear function that minimizes𝑅𝑠𝑞(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2▶ This problem is called least squares regression.▶ “Simple linear regression” refers to linear regression
with a single predictor variable.



Minimizing mean squared error for the linear
prediction rule



Minimizing the mean squared error▶ The MSE is a function 𝑅sq of a function 𝐻.𝑅sq(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2▶ But since 𝐻 is linear, we know 𝐻(𝑥𝑖) = 𝑤0 + 𝑤1𝑥𝑖.𝑅sq(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2▶ Now 𝑅𝑠𝑞 is a function of 𝑤0 and 𝑤1.▶ We call 𝑤0 and 𝑤1 parameters.▶ Parameters define our prediction rule.



Updated goal▶ Find the slope 𝑤∗1 and intercept 𝑤∗0 that minimize the MSE,𝑅sq(𝑤0, 𝑤1):𝑅sq(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2▶ Strategy: multivariable calculus.



Recall: the gradient▶ If 𝑓(𝑥, 𝑦) is a function of two variables, the gradient of 𝑓 at
the point (𝑥0, 𝑦0) is a vector of partial derivatives:∇𝑓(𝑥0, 𝑦0) = (𝜕𝑓𝜕𝑥 (𝑥0, 𝑦0)𝜕𝑓𝜕𝑦 (𝑥0, 𝑦0))▶ Key Fact #1: The derivative is to the tangent line as the
gradient is to the tangent plane.▶ Key Fact #2: The gradient points in the direction of the
biggest increase.▶ Key Fact #3: The gradient is zero at critical points.



Strategy
To minimize 𝑅(𝑤0, 𝑤1): compute the gradient, set it equal to
zero, and solve.



𝑅sq(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2
Discussion Question

Choose the expression that equals
𝜕𝑅sq𝜕𝑤0 .

a) 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))
b) −1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))
c) −2𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖
d) −2𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))
Go to menti.com and enter the code 4821 5997.



𝑅sq(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2𝜕𝑅sq𝜕𝑤0 =



𝑅sq(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2𝜕𝑅sq𝜕𝑤1 =



Strategy−2𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0 − 2𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0
1. Solve for 𝑤0 in first equation.▶ The result becomes 𝑤∗0, since it is the “best intercept”.
2. Plug 𝑤∗0 into second equation, solve for 𝑤1.▶ The result becomes 𝑤∗1, since it is the “best slope”.



Solve for w∗0−2𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) = 0



Solve for w∗1−2𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖)) 𝑥𝑖 = 0



Least squares solutions▶ We’ve found that the values 𝑤∗0 and 𝑤∗1 that minimize the
function 𝑅𝑠𝑞(𝑤0, 𝑤1) = 1𝑛 ∑𝑛𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2 are

𝑤∗1 = 𝑛∑𝑖=1 (𝑦𝑖 − �̄�)𝑥𝑖𝑛∑𝑖=1 (𝑥𝑖 − �̄�)𝑥𝑖 𝑤∗0 = �̄� − 𝑤∗1�̄�
where �̄� = 1𝑛 𝑛∑𝑖=1 𝑥𝑖 �̄� = 1𝑛 𝑛∑𝑖=1 𝑦𝑖▶ Let’s re-write the slope 𝑤∗1 to be a bit more symmetric.



Key fact
The sum of deviations from the mean for any dataset is 0.𝑛∑𝑖=1 (𝑥𝑖 − �̄�) = 0 𝑛∑𝑖=1 (𝑦𝑖 − �̄�) = 0
Proof:



Equivalent formula for w∗1
Claim

𝑤∗1 = 𝑛∑𝑖=1 (𝑦𝑖 − �̄�)𝑥𝑖𝑛∑𝑖=1 (𝑥𝑖 − �̄�)𝑥𝑖 =
𝑛∑𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑥𝑖 − �̄�)2

Proof:



Least squares solutions▶ The least squares solutions for the slope 𝑤∗1 and intercept𝑤∗0 are:
𝑤∗1 = 𝑛∑𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑥𝑖 − �̄�)2 𝑤∗0 = �̄� − 𝑤1�̄�

▶ We also say that 𝑤∗0 and 𝑤∗1 are optimal parameters.▶ To make predictions about the future, we use the
prediction rule 𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥



Example �̄� =�̄� =
𝑤∗1 = 𝑛∑𝑖=1 (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)𝑛∑𝑖=1 (𝑥𝑖 − �̄�)2 =
𝑤∗0 = �̄� − 𝑤1�̄� =𝑥𝑖 𝑦𝑖 (𝑥𝑖 − �̄�) (𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)2

3 7
4 3
8 2



Summary



▶ We introduced prediction rule framework to incorporate
features in our predictions.▶ We introduced the linear prediction rule, 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.▶ To determine the best choice of slope (𝑤1) and intercept
(𝑤0), we chose the squared loss function (𝑦𝑖 − 𝐻(𝑥𝑖))2 and
minimized empirical risk 𝑅𝑠𝑞(𝑤0, 𝑤1):𝑅𝑠𝑞(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2▶ After solving for 𝑤∗0 and 𝑤∗1 through partial differentiation,
we have a prediction rule 𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥 that we can use
to make predictions about the future.


