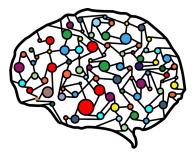
Lecture 8 - Simple Linear Regression



DSC 40A, Fall 2022 @ UC San Diego

Announcements

- Groupwork 2 is due Today at 23:59pm.
- HW 2 is due Friday 10/14 at 2:00pm.
- Midterm: 10/28 during class time.
 - Friday, 3-4PM, 4-5 PCYYNH 122.

Recap: Prediction Rule

Agenda

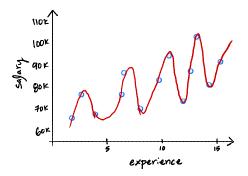
- Recap of gradient descent.
- Prediction rules.
- Minimizing mean squared error, again.

Finding the best prediction rule

- ▶ **Goal:** out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
- ▶ That is, *H*^{*} should be the function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 = \mathbf{O}$$

► There's a problem.



~

Problem

- ▶ We can make mean squared error very small, even zero!
- But the function will be weird.
- This is called overfitting.
- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
 - $\blacktriangleright \text{Linear: } H(x) = W_0 + W_1 x.$
 - Quadratic: $H(x) = w_0 + w_1 x_1 + w_2 x^2$.
 - Exponential: $H(x) = w_0 e^{w_1 x}$.

Constant:
$$H(x) = w_0$$
.

Finding the best linear prediction rule

Goal: out of all **linear** functions w_{0} , w_{0} , w_{0} , H^{*} with the smallest mean squared error. Linear functions are of the form $H(x) = w_{0} + w_{1}x$. $y = M \mathcal{X} + b$ **Goal:** out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function

• They are defined by a slope (w_1) and intercept (w_0) .

That is, H^{*} should be the linear function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

- This problem is called **least squares regression**.
 - "Simple linear regression" refers to linear regression with a single predictor variable.

Minimizing mean squared error for the linear prediction rule

Minimizing the mean squared error

• The MSE is a function R_{sq} of a function *H*.

 $\frac{R_{sq}(H)}{1} = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$ But since H is linear, we know $H(x_i) = w_0 + w_1 x_i$. $\frac{R_{sq}(w_0, w_1)}{t_{uvb}} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2 \\ R(h) \rightarrow h$ Now R_{sq} is a function of w_0 and w_1 . of our model. • We call w_0 and w_1 parameters. Parameters define our prediction rule.

Updated goal

Find the slope w_1^* and intercept w_0^* that minimize the MSE, $R_{sq}(w_0, w_1)$:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Strategy: multivariable calculus.

Recall: the gradient

If f(x, y) is a function of two variables, the gradient of f at the point (x₀, y₀) is a vector of partial derivatives:

X

X

2f=0+2+2

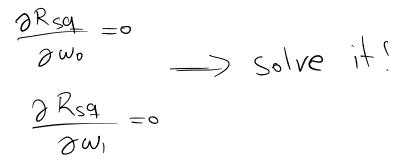
$$f(x,y) = \chi^{2} + \chi y + \frac{y^{2}}{2}$$

$$\frac{\partial f}{\partial x} = \frac{3\chi^{2} + y}{\chi} + 0 = 0 \quad \nabla f(x_{0}, y_{0}) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_{0}, y_{0}) \\ \frac{\partial f}{\partial y}(x_{0}, y_{0}) \end{pmatrix}$$

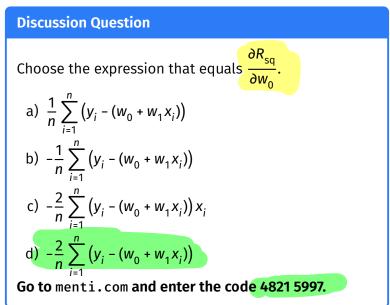
- Key Fact #1: The derivative is to the tangent line as the gradient is to the tangent plane.
- Key Fact #2: The gradient points in the direction of the biggest increase.
- **Key Fact #3**: The gradient is zero at critical points.

Strategy

To minimize $R(w_0, w_1)$: compute the gradient, set it equal to zero, and solve.



$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$



$$R_{sq}(w_{0}, w_{1}) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$\frac{\partial R_{sq}}{\partial w_{0}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{0}} (\mathcal{Y}_{1}^{*} - (w_{0} + w_{1}x_{1}))^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathcal{Q}_{1} (\mathcal{Y}_{1}^{*} - (w_{0} + w_{1}x_{1}))^{2} (-1)$$

$$= -\frac{2}{n} \sum_{i=1}^{n} (\mathcal{Y}_{1}^{*} - (w_{0} + w_{1}x_{1}))^{2} (-1)$$

$$R_{sq}(w_{0}, w_{1}) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$\frac{\partial R_{sq}}{\partial w_{1}} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2} - (w_{0} + w_{1}x_{i})) \times (-X_{i})$$

$$= -\frac{2}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i})) \times (-X_{i})$$

Strategy

$$-\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)=0 \qquad -\frac{2}{n}\sum_{i=1}^{n}\left(y_{i}-(w_{0}+w_{1}x_{i})\right)x_{i}=0$$

Solve for w_0 in first equation.

• The result becomes w_0^* , since it is the "best intercept".

2. Plug w_0^* into second equation, solve for w_1 .

• The result becomes w_1^* , since it is the "best slope".

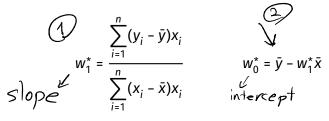
Years $W_0 = Y - W_1$ of $W_0 = Y - W_1$ of Y Y salary Grp - (X; gY;)Solve for w_0^* xt-n- $\sum_{n=1}^{n} \left(y_{i} - (w_{0} + w_{1}x_{i}) \right) = 0$ $\sum_{i=1}^{n} \left(y_{i} - \left(w_{0} + w_{1} X_{i} \right) \right) = 0$ $\tilde{\Sigma}_{W_0} - \tilde{\Sigma}_{W_1 X_1}$ × X1 - $-W_{j} \stackrel{\sum_{i=1}^{X_{j}}}{\rightarrow}$ ÷ y: - n Y - WI Z

Solve for w_1^*

 $\overline{x} \frac{n}{2} - \frac{2}{\sqrt{n}} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i = 0 \times (\frac{-n}{2})$ $\sum_{i=1}^{n} \left(y_{i} - \sqrt{y} - w_{i} \overline{x} + w_{i} x_{i} \right) x_{i} = 0$ $\sum_{i=1}^{n} \left[(y_i - \overline{y}) - \omega_i (x_i - \overline{x}) \right] x_i = 0$ $\sum_{i=1}^{n} (y_i - \overline{y}) \chi_i = W_i \sum_{i=1}^{n} (\chi_i - \overline{\chi}) \chi_i$ $\Rightarrow W_1^* = \frac{z}{z} (Y_i - \overline{Y}) X_i$ $\sum_{i=1}^{n} (X^{i} - X) X^{i}$

Least squares solutions

► We've found that the values w_0^* and w_1^* that minimize the function $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$ are

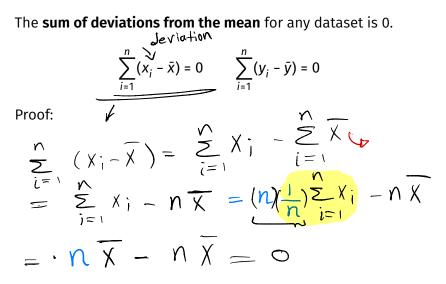


where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

Let's re-write the slope w^{*}₁ to be a bit more symmetric.

Key fact



.

Equivalent formula for w^{*}₁ $w_{1}^{*} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y}) x_{i}}{n} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{n}$ Claim $\sum_{i=1}^{n} (x_i - \bar{x}) x_i \qquad \sum_{i=1}^{n} (x_i - \bar{x})^2$ Proof: $M_{im} = \sum_{i=1}^{n} (y_i - \overline{y}) X_i = \sum_{i=1}^{n} (y_i - \overline{y}) \overline{X} = \sum_{i=1}^{n} (y_i - \overline{y}) X_i = \sum_{i=1}^{n}$ $\sum_{i=1}^{n} (y_i - \overline{y}) \overline{x} = \overline{x} \sum_{i=1}^{n} (y_i - \overline{y}) = \overline{x} \times 0 = 0$ i= Const see previous slide

Least squares solutions

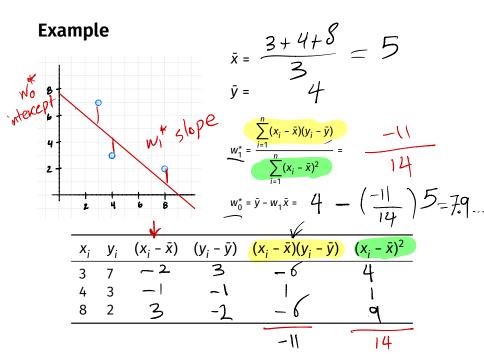
The least squares solutions for the slope w₁^{*} and intercept w₀^{*} are:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad w_0^* = \bar{y} - w_1 \bar{x}$$

We also say that w_0^* and w_1^* are **optimal parameters**.

To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$



Summary

- We introduced prediction rule framework to incorporate features in our predictions.
- We introduced the linear prediction rule, $H(x) = w_0 + w_1 x$.
- ► To determine the best choice of slope (w_1) and intercept (w_0) , we chose the squared loss function $(y_i H(x_i))^2$ and minimized empirical risk $R_{sa}(w_0, w_1)$:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

After solving for w_0^* and w_1^* through partial differentiation, we have a prediction rule $H^*(x) = w_0^* + w_1^* x$ that we can use to make predictions about the future.