Lecture 8 - Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego

Announcements

- Groupwork 2 is due Today at 23:59pm.
- HW 2 is due Friday 10/14 at 2:00pm.
- Midterm: 10/28 during class time.
- Friday, 3-4PM, 4-5 PCYYNH 122.

Recap: Prediction Rule

Agenda

- Recap of gradient descent.
- Prediction rules.
- Minimizing mean squared error, again.

Finding the best prediction rule

\Rightarrow Goal: out of all functions $\mathbb{R} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error.
\Rightarrow That is, H^{*} should be the function that minimizes

$$
R_{\text {sq }}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}=0
$$

- There's a problem.

Problem

- We can make mean squared error very small, even zero!
- But the function will be weird.

This is called overfitting.

- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
- Linear: $H(x)=w_{0}+w_{1} x$.
\Rightarrow Quadratic: $H(x)=w_{0}+w_{1} x_{1}+w_{2} x^{2}$.
\Rightarrow Exponential: $H(x)=w_{0} e^{w_{1} x}$.
- Constant: $H(x)=w_{0}$.

Finding the best linear prediction rule

- Goal: out of all linear functions $\mathbb{R} \rightarrow \mathbb{R}$, find the function H^{*} with the smallest mean squared error.
- Linear functions are of the form $H(x)=w_{0}+w_{1} x .5$

$$
y=m x+b
$$

- They are defined by a slope $\left(w_{1}\right)$ and intercept $\left(w_{0}\right)$.
- That is, H^{*} should be the linear function that minimizes

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- This problem is called least squares regression.
- "Simple linear regression" refers to linear regression with a single predictor variable.

Minimizing mean squared error for the linear prediction rule

Minimizing the mean squared error
The MSE is a function $R_{\text {sq }}$ of a function H.

$$
R_{\text {sq }}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

But since H is linear, we know $H\left(x_{i}\right)=w_{0}+w_{1} x_{i}$.

$$
R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \quad R(h) \rightarrow h^{*}
$$

Now $R_{s q}$ is a function of w_{0} and w_{1}.
We call w_{0} and w_{1} parameters. of our model. Parameters define our prediction rule.

Updated goal

- Find the slope w_{1}^{*} and intercept w_{0}^{*} that minimize the MSE, $R_{\text {sq }}\left(w_{0}, w_{1}\right)$:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- Strategy: multivariable calculus.

Recall: the gradient

$x \quad x$
\Rightarrow If $f(x, y)$ is a function of two variables, the gradient of f at the point $\left(x_{0}, y_{0}\right)$ is a vector of partial derivatives:

$$
\left.\begin{array}{l}
f(x, y)=x^{3}+x y+y^{2} \\
\frac{\partial f}{\partial x}=3 x^{2}+y+0=0 \nabla f\left(x_{0}, y_{0}\right)=\binom{\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)}{x} \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)
\end{array}\right)=0+x+2 y=0 \text { 位 }
$$

- Key Fact \#2: The gradient points in the direction of the biggest increase.
- Key Fact \#3: The gradient is zero at critical points.

Strategy
To minimize $R\left(w_{0}, w_{1}\right)$: compute the gradient, set it equal to zero, and solve.

$$
\begin{aligned}
& \frac{\partial R_{s q}}{\partial \omega_{0}}=0 \\
& \frac{\partial R_{s q}}{\partial \omega_{1}}=0
\end{aligned}
$$

$R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \leftrightharpoons$

Discussion Question

Choose the expression that equals $\frac{\partial R_{s q}}{\partial w_{0}}$.
a) $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
b) $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
c) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
d) $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

Go to menti. com and enter the code 48215997.

$$
\begin{aligned}
& R_{s q}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& \frac{\partial R_{s q}}{\partial w_{0}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{0}}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} 2(\underbrace{\alpha} \underbrace{}_{i}-\left(w_{0}+w_{1} x_{i} x_{i}\right))^{2}(-1) \\
& =\frac{-2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{i} x_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
R_{s q}\left(w_{0}, w_{1}\right) & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2} \\
\frac{\partial R_{s q}}{\partial w_{1}} & =\frac{1}{n} \sum_{i=1}^{n} 2\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) \times\left(-x_{i}\right) \\
& =-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}
\end{aligned}
$$

Strategy

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \quad-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

(1. Solve for w_{0} in first equation.

- The result becomes w_{0}^{*}, since it is the "best intercept".

2. Plug w_{0}^{*} into second equation, solve for w_{1}.

- The result becomes w_{1}^{*}, since it is the "best slope".

$$
\begin{aligned}
& \text { Solve for } w_{0}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
w_{0}^{*}=\bar{Y}-w_{1} \bar{X} \\
\dot{y} \\
\left(X_{i}, y_{i}{ }^{\text {salary }}\right)
\end{array} \\
& \sum_{i=1}^{n}\left(y_{i}-\underset{w_{0}+w_{0}+\cdots}{\left.\left(w_{0}+w_{1} x_{i}\right)\right)=0}\right. \\
& \sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} w_{0}-\sum_{i=1}^{n} w_{1} x_{i}=0 \Rightarrow \\
& \sum_{i=1}^{n} y_{i}-n w_{0}-w_{1} \sum_{i=1}^{n} x_{i}=0 \\
& \Rightarrow n w_{0}=\sum_{i=1}^{n} y_{i}-w_{1} \sum_{i=1}^{n} x_{i} \\
& \Rightarrow W_{0}=\frac{1}{n} \sum_{i=1}^{n} y_{i}-w_{1} \frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Solve for w_{1}^{*}

$$
\begin{aligned}
& \bar{x} \frac{n}{2}-\frac{2}{2} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0 \times\left(\frac{-n}{2}\right) \\
& \sum_{i=1}^{n}\left(y_{i}-\left(\bar{y}-w_{1} \bar{x}+w_{1} x_{i}\right) x_{i}=0\right. \\
& \sum_{i=1}^{n}\left[\left(y_{i}-\bar{y}\right)-w_{1}\left(x_{i}-\bar{x}\right)\right] x_{i}=0 \\
& \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}=w_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i} \\
& \Rightarrow w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}
\end{aligned}
$$

Least squares solutions

- We've found that the values w_{0}^{*} and w_{1}^{*} that minimize the function $R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$ are
slope $\underbrace{\left.w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \quad \begin{array}{l}w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x} \\ \text { intercept }\end{array}\right]}$
where

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- Let's re-write the slope w_{1}^{*} to be a bit more symmetric.

Key fact
The sum of deviations from the mean for any dataset is 0 .

$$
\begin{aligned}
& \quad \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0}{\downarrow} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0 \\
& \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} \overline{x_{i}} \bar{x}_{b} \\
& = \\
& \sum_{i=1}^{n} x_{i}-n \bar{x}=(\underbrace{(n)\left(\frac{1}{n}\right.} \sum_{i=1}^{n} x_{i}-n \bar{x} \\
& =n \bar{x}-n \bar{x}=0
\end{aligned}
$$

Equivalent formula for w_{1}^{*}
Claim

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\downarrow=\searrow} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i} \quad \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

$$
\begin{aligned}
& \text { Nom }-\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}-\underbrace{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) \bar{X}}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) \\
& \left(x_{i}-\bar{x}\right) \\
& \text { done! } \\
& \sum_{i=1}^{\infty}\left(y_{i}-\bar{y}\right) \bar{x}=\bar{x} \sum_{i=1}^{n} \begin{array}{l}
\left(y_{i}-\bar{y}\right)=\bar{x} \\
\text { seepreviouss side }
\end{array} \\
& \text { cost }
\end{aligned}
$$

Least squares solutions

\Rightarrow The least squares solutions for the slope w_{1}^{*} and intercept w_{0}^{*} are:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1} \bar{x}
$$

- We also say that w_{0}^{*} and w_{1}^{*} are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$
H^{*}(x)=w_{0}^{\star}+w_{1}^{*} x
$$

Summary

- We introduced prediction rule framework to incorporate features in our predictions.
- We introduced the linear prediction rule, $H(x)=w_{0}+w_{1} x$.
- To determine the best choice of slope $\left(w_{1}\right)$ and intercept $\left(w_{0}\right)$, we chose the squared loss function $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$ and minimized empirical risk $R_{s q}\left(w_{0}, w_{1}\right)$:

$$
R_{s q}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- After solving for w_{0}^{*} and w_{1}^{*} through partial differentiation, we have a prediction rule $H^{*}(x)=w_{0}^{*}+w_{1}^{*} x$ that we can use to make predictions about the future.

