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Announcements
▶ Look at the readings linked on the course website!

▶ Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture
Homework Submission Day: Friday before lecture

▶ See dsc40a.com/calendar for the Office Hours schedule.

dsc40a.com/calendar


Midterm study strategy

▶ Review the solutions to previous homeworks and
groupworks.

▶ Re-watch lecture, post on Campuswire, come to office
hours.

▶ Look at the past exams at
https://dsc40a.com/resources.

▶ Study in groups.

▶ Remember: it’s just an exam.

https://dsc40a.com/resources


Agenda

▶ Recap of simple linear regression.

▶ Correlation.

▶ Linear algebra review.



Recap of simple linear regression



Linear prediction rules

▶ New: Instead of predicting the same future value (e.g.
salary) ℎ for everyone, we will now use a prediction rule
𝐻(𝑥) that uses features, i.e. information about individuals,
to make predictions.

▶ We decided to use a linear prediction rule, which is of the
form 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.
▶ 𝑤0 and 𝑤1 are called parameters.



Finding the best linear prediction rule
▶ In order to find the best linear prediction rule, we need to
pick a loss function and minimize the corresponding
empirical risk.
▶ We chose squared loss, (𝑦𝑖 − 𝐻(𝑥𝑖))

2, as our loss
function.

▶ The MSE is a function 𝑅sq of a function 𝐻.

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))

2

▶ But since 𝐻 is linear, we know 𝐻(𝑥𝑖) = 𝑤0 + 𝑤1𝑥𝑖.

𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2



Finding the best linear prediction rule

▶ Our goal last lecture was to find the slope 𝑤∗1 and
intercept 𝑤∗0 that minimize the MSE, 𝑅sq(𝑤0, 𝑤1):

𝑅sq(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ We did so using multivariable calculus.

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

𝑤∗0 = �̄� − 𝑤∗1�̄�

▶ To make predictions: 𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1(𝑥).



Example
�̄� =

�̄� =

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

=

𝑤∗0 = �̄� − 𝑤∗1�̄� =

𝑥𝑖 𝑦𝑖 (𝑥𝑖 − �̄�) (𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�) (𝑥𝑖 − �̄�)2

3 7
4 3
8 2

Let’s solve it by computer programming!



import numpy as np
def simple_lr(x, y):

x_bar = np.mean(np.array(x))
y_bar = np.mean(np.array(y))
print('Table:')
num_samples = len(x)
sum_products = 0
sum_squares = 0
for i in range(num_samples):

x_diff = x[i] - x_bar
y_diff = y[i] - y_bar
prod = x_diff * y_diff
square = x_diff * x_diff
sum_products += prod
sum_squares += square
print(x[i],y[i],x_diff,y_diff,prod,square)

w1_star = sum_products / sum_squares
w0_star = y_bar - w1_star * x_bar
return x_bar, y_bar, w0_star, w1_star



x = [3, 4, 8]
y = [7, 3, 2]
x_bar, y_bar, w0_star, w1_star = simple_lr(x, y)

print('x_bar =', x_bar)
print('y_bar =', y_bar)
print('w1_star = ', w1_star)
print('w0_star = ', w0_star)
-------------------------------------------------
Table:
3 7 -2.0 3.0 -6.0 4.0
4 3 -1.0 -1.0 1.0 1.0
8 2 3.0 -2.0 -6.0 9.0
x_bar = 5.0
y_bar = 4.0
w1_star = -0.7857142857142857
w0_star = 7.928571428571429



Solution to example



Terminology

▶ 𝑥: features.

▶ 𝑦: response variable.

▶ 𝑤0, 𝑤1: parameters.

▶ 𝑤∗0, 𝑤∗1: optimal parameters.
▶ Optimal because they minimize mean squared error.

▶ The process of finding the optimal parameters for a given
prediction rule and dataset is called “fitting to the data”.

▶ 𝑅𝑠𝑞(𝑤0, 𝑤1) =
1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2: mean squared error,
empirical risk.



Correlation





Correlation coefficient
▶ In DSC 10, you were introduced to the idea of correlation.

▶ It is a measure of the strength of the linear
association of two variables, 𝑥 and 𝑦. Intuitively, it is
a measure of how tightly clustered a scatter plot is
around a straight line.

▶ The correlation coefficient, 𝑟, is defined as the average of
the product of 𝑥 and 𝑦, when both are in standard units.
▶ 𝑥𝑖 in standard units:

𝑥𝑖 − �̄�
𝜎𝑥

.

𝑦𝑖 in standard units:
𝑦𝑖 − �̄�
𝜎𝑦

.

▶ Definition of 𝑟:

𝑟 = 1𝑛
𝑛
∑
𝑖=1
(
𝑥𝑖 − �̄�
𝜎𝑥

) ⋅ (
𝑦𝑖 − �̄�
𝜎𝑦

)
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Properties of the correlation coefficient 𝑟

▶ 𝑟 has no units.

▶ It ranges between -1 and 1.
▶ 𝑟 = 1 indicates a perfect positive linear association (x
and y lie exactly on a straight line that is sloped
upwards).

▶ 𝑟 = −1 indicates a perfect negative linear association
between 𝑥 and 𝑦.

▶ The closer 𝑟 is to 0, the weaker the linear association
between 𝑥 and 𝑦 is.

▶ 𝑟 says nothing about non-linear association.





Another way to express 𝑤∗1
▶ It turns out that 𝑤∗1, the optimal slope for the linear
prediction rule, can be written in terms of 𝑟!

𝑤∗1 =

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

= 𝑟
𝜎𝑦
𝜎𝑥

▶ It’s not surprising that 𝑟 is related to 𝑤∗1, since 𝑟 is a
measure of linear association.

▶ Concise way of writing 𝑤∗0 and 𝑤∗1:

𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥

𝑤∗0 = �̄� − 𝑤∗1�̄�



Proof that 𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥

By definition, we have:

𝜎𝑥 = √
1
𝑛

𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

Thus:

𝑛𝜎2𝑥 =
𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)2

On the another hand, we also have:

𝑟 = 1𝑛
𝑛
∑
𝑖=1
(
𝑥𝑖 − �̄�
𝜎𝑥

) ⋅ (
𝑦𝑖 − �̄�
𝜎𝑦

)

That leads to:

𝑟𝑛𝜎𝑥𝜎𝑦 =
𝑛
∑
𝑖=1
(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)
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Proof that 𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥
(continued)

By definition, we have:
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∑𝑛𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)
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Interpreting the slope

𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥

▶ 𝜎𝑦 and 𝜎𝑥 are always non-negative. As a result, the sign of
the slope is determined by the sign of 𝑟.

▶ As the 𝑦 values get more spread out, 𝜎𝑦 increases and so
does the slope.

▶ As the 𝑥 values get more spread out, 𝜎𝑥 increases and the
slope decreases.



Interpreting the intercept

𝑤∗0 = �̄� − 𝑤∗1�̄�

▶ What is 𝑅𝑠𝑞(𝐻∗(�̄�))?

𝑅𝑠𝑞(𝐻∗(�̄�)) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤∗0 + 𝑤∗1�̄�))2

⇔ 𝑅𝑠𝑞(𝐻∗(�̄�)) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (�̄� − 𝑤∗1�̄� + 𝑤∗1�̄�))2 =

1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − �̄�)2 = 𝜎2𝑦

Actually 𝐻∗(�̄�) = �̄�.
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Discussion Question

We fit a linear prediction rule for salary given years of
experience. Then everyone gets a $5,000 raise. Which
of these happens?

a) slope increases, intercept increases

b) slope decreases, intercept increases

c) slope stays same, intercept increases

d) slope stays same, intercept stays same

Answer: C
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Linear algebra review



Wait... why do we need linear algebra?

▶ Soon, we’ll want to make predictions using more than one
feature (e.g. predicting salary using years of experience
and GPA).

▶ Thinking about linear regression in terms of linear
algebra will allow us to find prediction rules that
▶ use multiple features.

▶ are non-linear.

▶ Before we dive in, let’s review.

▶ There can be linear algebra on the midterm!!



Matrices
▶ An 𝑚 × 𝑛 matrix is a table of numbers with 𝑚 rows and 𝑛
columns.

▶ We use upper-case letters for matrices.

𝐴 = [1 2 3
4 5 6]

▶ 𝐴𝑇 denotes the transpose of 𝐴:

𝐴𝑇 = [
1 4
2 5
3 6

]



Matrix addition and scalar multiplication

▶ We can add two matrices only if they are the same size.

▶ Addition occurs elementwise:

[1 2 3
4 5 6] + [

7 8 9
−1 −2 −3] = [

8 10 12
3 3 3 ]

▶ Scalar multiplication occurs elementwise, too:

2 ⋅ [1 2 3
4 5 6] = [

2 4 6
8 10 12]



Matrix-matrix multiplication

▶ We can multiply two matrices 𝐴 and 𝐵 only if

# columns in 𝐴 = # rows in 𝐵.

▶ If 𝐴 is 𝑚 × 𝑛 and 𝐵 is 𝑛 × 𝑝, the result is 𝑚 × 𝑝.
▶ This is very useful.

▶ The 𝑖𝑗 entry of the product is:

(𝐴𝐵)𝑖𝑗 =
𝑛
∑
𝑘=1

𝐴𝑖𝑘𝐵𝑘𝑗



Some matrix properties
▶ Multiplication is Distributive:

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶
▶ Multiplication is Associative:

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)
▶ Multiplication is not commutative:

𝐴𝐵 ≠ 𝐵𝐴
▶ Transpose of sum:

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

▶ Transpose of product:

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇



Vectors
▶ An vector in ℝ𝑛 is an 𝑛 × 1 matrix.

▶ We use lower-case letters for vectors.

⃗𝑣 = [
2
1
5
−3
]

▶ Vector addition and scalar multiplication occur
elementwise.



Geometric meaning of vectors

▶ A vector ⃗𝑣 = (𝑣1, … , 𝑣𝑛) is an arrow to the point (𝑣1, … , 𝑣𝑛)
from the origin.

▶ The length, or norm, of ⃗𝑣 is ‖ ⃗𝑣‖ = √𝑣21 + 𝑣22 + … + 𝑣2𝑛 .



Dot products

▶ The dot product of two vectors �⃗� and ⃗𝑣 in ℝ𝑛 is denoted
by:

�⃗� ⋅ ⃗𝑣 = �⃗�𝑇 ⃗𝑣

▶ Definition:

�⃗� ⋅ ⃗𝑣 =
𝑛
∑
𝑖=1
𝑢𝑖𝑣𝑖 = 𝑢1𝑣1 + 𝑢2𝑣2 + … + 𝑢𝑛𝑣𝑛

▶ The result is a scalar!



Discussion Question

Which of these is another expression for the length of �⃗�?

a) �⃗� ⋅ �⃗�
b) √�⃗�2
c) √�⃗� ⋅ �⃗�
d) �⃗�2

Answer: C
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Properties of the dot product

▶ Commutative:

�⃗� ⋅ ⃗𝑣 = ⃗𝑣 ⋅ �⃗� = �⃗�𝑇 ⃗𝑣 = ⃗𝑣𝑇 �⃗�

▶ Distributive:
�⃗� ⋅ ( ⃗𝑣 + �⃗�) = �⃗� ⋅ ⃗𝑣 + �⃗� ⋅ �⃗�



Matrix-vector multiplication

▶ Special case of matrix-matrix multiplication.

▶ Result is always a vector with same number of rows as the
matrix.

▶ One view: a “mixture” of the columns.

[1 2 1
3 4 5] [

𝑎1
𝑎2
𝑎3
] = 𝑎1 [

1
3] + 𝑎2 [

2
4] + 𝑎3 [

1
5]

▶ Another view: a dot product with the rows.



Discussion Question

If 𝐴 is an 𝑚 × 𝑛 matrix and ⃗𝑣 is a vector in ℝ𝑛, what are
the dimensions of the product ⃗𝑣𝑇𝐴𝑇𝐴 ⃗𝑣?

a) 𝑚 × 𝑛 (matrix)
b) 𝑛 × 1 (vector)
c) 1 × 1 (scalar)
d) The product is undefined.

Answer: C
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Summary



Summary, next time
▶ The correlation coefficient, 𝑟, measures the strength of
the linear association between two variables 𝑥 and 𝑦.

▶ We can re-write the optimal parameters for the linear
prediction rule (under squared loss) as

𝑤∗1 = 𝑟
𝜎𝑦
𝜎𝑥

𝑤∗0 = �̄� − 𝑤∗1�̄�

▶ We can then make predictions using 𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥.

▶ We will need linear algebra in order to generalize
regression to work with multiple features.

▶ Next time: Formulate linear regression in terms of linear
algebra.


