Lecture 8 - More Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Announcements

- Look at the readings linked on the course website!
- Groupwork Relsease Day: Thursday afternoon Groupwork Submission Day: Monday midnight Homework Release Day: Friday after lecture Homework Submission Day: Friday before lecture
\Rightarrow See dsc4ea. com/calendar for the Office Hours schedule.

Midterm study strategy

- Review the solutions to previous homeworks and groupworks.
- Re-watch lecture, post on Campuswire, come to office hours.
- Look at the past exams at https://dsc4ea.com/resources.
- Study in groups.
- Remember: it's just an exam.

Agenda

- Recap of simple linear regression.
- Correlation.
- Linear algebra review.

Recap of simple linear regression

Linear prediction rules

- New: Instead of predicting the same future value (e.g. salary) h for everyone, we will now use a prediction rule $H(x)$ that uses features, i.e. information about individuals, to make predictions.
- We decided to use a linear prediction rule, which is of the form $H(x)=w_{0}+w_{1} x$.
${ }^{-} w_{0}$ and w_{1} are called parameters.

Finding the best linear prediction rule

- In order to find the best linear prediction rule, we need to pick a loss function and minimize the corresponding empirical risk.
- We chose squared loss, $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$, as our loss function.
\Rightarrow The MSE is a function $R_{\text {sq }}$ of a function H.

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

\Rightarrow But since H is linear, we know $H\left(x_{i}\right)=w_{0}+w_{1} x_{i}$.

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Finding the best linear prediction rule

- Our goal last lecture was to find the slope w_{1}^{*} and intercept w_{0}^{*} that minimize the MSE, $R_{\text {sq }}\left(w_{0}, w_{1}\right)$:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- We did so using multivariable calculus.

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

- To make predictions: $H^{*}(x)=w_{0}^{*}+w_{1}^{*}(x)$.

Example

\[

\]

import numpy as np def simple_lr(x, y):
x_bar = np.mean(np.array(x))
y_bar = np.mean(np.array(y))
print('Table:')
num_samples $=$ len(x)
sum_products = 0
sum_squares = 0
for i in range(num_samples):
x_diff = x[i] - x_bar
y_diff = y[i] - y_bar
prod = x_diff * y_diff
square = x_diff * x_diff
sum_products += prod
sum_squares += square
print(x[i],y[i],x_diff,y_diff,prod,square)
w1_star = sum_products / sum_squares
wo_star = y_bar - w1_star * x_bar
return x_bar, y_bar, wo_star, w1_star
$x=[3,4,8]$
$y=[7,3,2]$
x_bar, y_bar, w@_star, w1_star = simple_lr(x, y)
print('x_bar =', x_bar)
print('y_bar =', y_bar)
print('w1_star = ', w1_star)
print('wo_star = ', wo_star)
Table:

```
37 -2.0 3.0 -6.0 4.0
4 3-1.0 -1.0 1.01 .0
\(823.0-2.0-6.09 .0\)
x_bar = 5.0
y_bar \(=4.0\)
w1_star = -0.7857142857142857
wo_star = 7.928571428571429
```


Solution to example

Terminology

> x : features.
> y : response variable.
${ }^{-} w_{0}, w_{1}$: parameters.
${ }^{-} w_{0}^{*}, w_{1}^{*}$: optimal parameters.

- Optimal because they minimize mean squared error.
- The process of finding the optimal parameters for a given prediction rule and dataset is called "fitting to the data".
$\Rightarrow R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$: mean squared error, empirical risk.

Correlation

Correlation coefficient

- In DSC 10, you were introduced to the idea of correlation.
$>$ It is a measure of the strength of the linear association of two variables, x and y. Intuitively, it is a measure of how tightly clustered a scatter plot is around a straight line.
> The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
$\Rightarrow x_{i}$ in standard units: $\frac{x_{i}-\bar{x}}{\sigma_{x}}$.
y_{i} in standard units: $\frac{y_{i}-\bar{y}}{\sigma_{y}}$.

Correlation coefficient

- In DSC 10, you were introduced to the idea of correlation.
$>$ It is a measure of the strength of the linear association of two variables, x and y. Intuitively, it is a measure of how tightly clustered a scatter plot is around a straight line.
> The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
$>x_{i}$ in standard units: $\frac{x_{i}-\bar{x}}{\sigma_{x}}$.
y_{i} in standard units: $\frac{y_{i}-\bar{y}}{\sigma_{y}}$.
- Definition of r :

$$
r=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right) \cdot\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

Properties of the correlation coefficient r

- r has no units.
- It ranges between -1 and 1.
$r=1$ indicates a perfect positive linear association (x and y lie exactly on a straight line that is sloped upwards).
$r=-1$ indicates a perfect negative linear association between x and y.
- The closer r is to 0 , the weaker the linear association between x and y is.
r says nothing about non-linear association.

Another way to express w_{1}^{*}

- It turns out that w_{1}^{*}, the optimal slope for the linear prediction rule, can be written in terms of r !

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- It's not surprising that r is related to w_{1}^{*}, since r is a measure of linear association.
- Concise way of writing w_{0}^{*} and w_{1}^{*} :

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$

By definition, we have:

$$
\sigma_{x}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$
By definition, we have:

$$
\sigma_{x}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Thus:

$$
n \sigma_{x}^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$
By definition, we have:

$$
\sigma_{x}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Thus:

$$
n \sigma_{x}^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

On the another hand, we also have:

$$
r=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right) \cdot\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

That leads to:

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$
By definition, we have:

$$
\sigma_{x}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Thus:

$$
n \sigma_{x}^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

On the another hand, we also have:

$$
r=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right) \cdot\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

That leads to:

$$
r n \sigma_{x} \sigma_{y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$ (continued)

By definition, we have:

$$
w_{1}^{\star}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$ (continued)

By definition, we have:

$$
w_{1}^{\star}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Therefore:

$$
w_{1}^{*}=\frac{n r \sigma_{x} \sigma_{y}}{n \sigma_{x}^{2}}=
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$ (continued)

By definition, we have:

$$
w_{1}^{\star}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Therefore:

$$
w_{1}^{*}=\frac{n r \sigma_{x} \sigma_{y}}{n \sigma_{x}^{2}}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

Interpreting the slope

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- σ_{y} and σ_{x} are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_{y} increases and so does the slope.
- As the x values get more spread out, σ_{x} increases and the slope decreases.

Interpreting the intercept

$$
w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

\Rightarrow What is $R_{\mathrm{sq}}\left(H^{*}(\bar{x})\right)$?

Interpreting the intercept

$$
w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

\Rightarrow What is $R_{\text {sq }}\left(H^{*}(\bar{x})\right)$?

$$
R_{s q}\left(H^{*}(\bar{x})\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}^{\star}+w_{1}^{\star} \bar{x}\right)\right)^{2}
$$

Interpreting the intercept

$$
w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

\Rightarrow What is $R_{\text {sq }}\left(H^{*}(\bar{x})\right)$?

$$
\begin{aligned}
& R_{s q}\left(H^{*}(\bar{x})\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}^{*}+w_{1}^{*} \bar{x}\right)\right)^{2} \\
\Leftrightarrow & R_{s q}\left(H^{*}(\bar{x})\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(\bar{y}-w_{1}^{*} \bar{x}+w_{1}^{*} \bar{x}\right)\right)^{2}=
\end{aligned}
$$

Interpreting the intercept

$$
w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

\Rightarrow What is $R_{\text {sq }}\left(H^{*}(\bar{x})\right)$?

$$
\begin{gathered}
R_{s q}\left(H^{*}(\bar{x})\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}^{*}+w_{1}^{*} \bar{x}\right)\right)^{2} \\
\Leftrightarrow R_{s q}\left(H^{*}(\bar{x})\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(\bar{y}-w_{1}^{*} \bar{x}+w_{1}^{*} \bar{x}\right)\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sigma_{y}^{2}
\end{gathered}
$$

Actually $H^{*}(\bar{x})=\bar{y}$.

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a $\$ 5,000$ raise. Which of these happens?
a) slope increases, intercept increases
b) slope decreases, intercept increases
c) slope stays same, intercept increases
d) slope stays same, intercept stays same

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a $\$ 5,000$ raise. Which of these happens?
a) slope increases, intercept increases
b) slope decreases, intercept increases
c) slope stays same, intercept increases
d) slope stays same, intercept stays same

Answer: C

Linear algebra review

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
> use multiple features.
- are non-linear.
- Before we dive in, let's review.
- There can be linear algebra on the midterm!!

Matrices

- An $m \times n$ matrix is a table of numbers with m rows and n columns.
- We use upper-case letters for matrices.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

- A^{T} denotes the transpose of A :

$$
A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

Matrix addition and scalar multiplication

- We can add two matrices only if they are the same size.
- Addition occurs elementwise:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]+\left[\begin{array}{ccc}
7 & 8 & 9 \\
-1 & -2 & -3
\end{array}\right]=\left[\begin{array}{ccc}
8 & 10 & 12 \\
3 & 3 & 3
\end{array}\right]
$$

- Scalar multiplication occurs elementwise, too:

$$
2 \cdot\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right]
$$

Matrix-matrix multiplication

- We can multiply two matrices A and B only if \# columns in $A=\#$ rows in B.
\Rightarrow If A is $m \times n$ and B is $n \times p$, the result is $m \times p$. \Rightarrow This is very useful.
> The ij entry of the product is:

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Some matrix properties

- Multiplication is Distributive:

$$
A(B+C)=A B+A C
$$

- Multiplication is Associative:

$$
(A B) C=A(B C)
$$

- Multiplication is not commutative:

$$
A B \neq B A
$$

- Transpose of sum:

$$
(A+B)^{T}=A^{T}+B^{T}
$$

- Transpose of product:

$$
(A B)^{T}=B^{T} A^{T}
$$

Vectors

- An vector in \mathbb{R}^{n} is an $n \times 1$ matrix.
- We use lower-case letters for vectors.

$$
\vec{v}=\left[\begin{array}{c}
2 \\
1 \\
5 \\
-3
\end{array}\right]
$$

- Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

A vector $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ is an arrow to the point $\left(v_{1}, \ldots, v_{n}\right)$ from the origin.

The length, or norm, of \vec{v} is $\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}$.

Dot products

- The dot product of two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} is denoted by:

$$
\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}
$$

- Definition:

$$
\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

The result is a scalar!

Discussion Question

Which of these is another expression for the length of \vec{u} ?
a) $\vec{u} \cdot \vec{u}$
b) $\sqrt{\vec{u}^{2}}$
c) $\sqrt{\vec{u} \cdot \vec{u}}$
d) \vec{u}^{2}

Discussion Question

Which of these is another expression for the length of \vec{u} ?
a) $\vec{u} \cdot \vec{u}$
b) $\sqrt{\vec{u}^{2}}$
c) $\sqrt{\vec{u} \cdot \vec{u}}$
d) \vec{u}^{2}

Answer: C

Properties of the dot product

- Commutative:

$$
\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}=\vec{u}^{T} \vec{v}=\vec{v}^{T} \vec{u}
$$

- Distributive:

$$
\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}
$$

Matrix-vector multiplication

- Special case of matrix-matrix multiplication.
- Result is always a vector with same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=a_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+a_{2}\left[\begin{array}{l}
2 \\
4
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

- Another view: a dot product with the rows.

Discussion Question

If A is an $m \times n$ matrix and \vec{v} is a vector in \mathbb{R}^{n}, what are the dimensions of the product $\vec{v}^{\top} A^{\top} A \vec{v}$?
a) $m \times n$ (matrix)
b) $n \times 1$ (vector)
c) 1×1 (scalar)
d) The product is undefined.

Discussion Question

If A is an $m \times n$ matrix and \vec{v} is a vector in \mathbb{R}^{n}, what are the dimensions of the product $\vec{v}^{\top} A^{T} A \vec{v}$?
a) $m \times n$ (matrix)
b) $n \times 1$ (vector)
c) 1×1 (scalar)
d) The product is undefined.

Answer: C

Summary

Summary, next time

- The correlation coefficient, r, measures the strength of the linear association between two variables x and y.
- We can re-write the optimal parameters for the linear prediction rule (under squared loss) as

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

\Rightarrow We can then make predictions using $H^{*}(x)=w_{0}^{*}+w_{1}^{*} x$.

- We will need linear algebra in order to generalize regression to work with multiple features.
- Next time: Formulate linear regression in terms of linear algebra.

