Lecture 8 - More Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others



Announcements

Look at the readings linked on the course website!

Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture
Homework Submission Day: Friday before lecture

See dscs40a.com/calendar for the Office Hours schedule.


dsc40a.com/calendar

Midterm study strategy

Review the solutions to previous homeworks and
groupworks.

Re-watch lecture, post on Campuswire, come to office
hours.

Look at the past exams at
https://dsc4ea.com/resources.

Study in groups.

Remember: it's just an exam.


https://dsc40a.com/resources

Agenda

Recap of simple linear regression.
Correlation.

Linear algebra review.



Recap of simple linear regression



Linear prediction rules

New: Instead of predicting the same future value (e.g.
salary) h for everyone, we will now use a prediction rule
H(x) that uses features, i.e. information about individuals,
to make predictions.

We decided to use a linear prediction rule, which is of the

form H(x) = w, + w, x.
w, and w, are called parameters.



Finding the best linear prediction rule

In order to find the best linear prediction rule, we need to
pick a loss function and minimize the corresponding

empirical risk.
2
We chose squared loss, (y; - H(x;))", as our loss
function.

The MSE is a function qu of a function H.
n
=130,
n i=1

But since H is linear, we know H(x;) = w,, + w, X;.

( Y = (wy +w, Xi))2
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Finding the best linear prediction rule

Our goal last lecture was to find the slope wj and
intercept wg that minimize the MSE, qu(wo, w,):

*

To make predictions: H*(x) = w;

+ Wi (x).
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Let’s solve it by computer programming!



import numpy as np
def simple_lr(x, y):
x_bar = np.mean(np.array(x))
y_bar = np.mean(np.array(y))
print('Table:")
num_samples = len(x)
sum_products = o
sum_squares = 0
for i in range(num_samples):
x_diff = x[i] - x_bar
y_diff = y[i] - y_bar
prod = x_diff = y_diff
square = x_diff = x_diff
sum_products += prod
sum_squares += square
print(x[i],y[i],x_diff,y_diff,prod,square)
wi_star = sum_products / sum_squares
wo_star = y_bar - wi_star * x_bar
return x_bar, y_bar, we_star, wi_star



x = [3, 4, 8]
y = [7, 3, 2]
x_bar, y_bar, we_star, wi_star = simple_lr(x, y)

print('x_bar =', x_bar)

print('y_bar =', y_bar)

print('wi_star = ', wi_star)
print('we_star = ', woe_star)
Table:

37 -2.0 3.0 -6.0 4.0
4 3 -1.0 -1.0 1.0 1.0
8 2 3.0 -2.0 -6.0 9.0

X_bar = 5.0

y_bar = 4.0

wi_star = -0.7857142857142857
wo_star = 7.928571428571429



Solution to example

iy
o

A

[iey
o




Terminology
x: features.
y: response variable.
w,, W,: parameters.

wg, w;: optimal parameters.
Optimal because they minimize mean squared error.

The process of finding the optimal parameters for a given
prediction rule and dataset is called “fitting to the data”.

_1sn 2,
RogWo wy) = 157, (v; - (w, + w,x;))": mean squared error,
empirical risk.



Correlation






Correlation coefficient

In DSC 10, you were introduced to the idea of correlation.
It is @ measure of the strength of the linear
association of two variables, x and y. Intuitively, it is
a measure of how tightly clustered a scatter plot is
around a straight line.

The correlation coefficient, r, is defined as the average of

the product of x and y, when both are in standard units.
X - X

x; in standard units:

. 4
y; in standard units:



Correlation coefficient

In DSC 10, you were introduced to the idea of correlation.
It is @ measure of the strength of the linear
association of two variables, x and y. Intuitively, it is
a measure of how tightly clustered a scatter plot is
around a straight line.

The correlation coefficient, r, is defined as the average of
the product of x and y, when both are in standard units.

x; in standard units:

. 4
y; in standard units:

Definition of r:




Properties of the correlation coefficient r

r has no units.

It ranges between -1 and 1.
r = 1 indicates a perfect positive linear association (x
and y lie exactly on a straight line that is sloped
upwards).
r = -1 indicates a perfect negative linear association
between x and y.
The closer r is to 0, the weaker the linear association
between x and y is.
r says nothing about non-linear association.
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Another way to express w;

It turns out that w3, the optimal slope for the linear
prediction rule, can be written in terms of r!

n
(X,' - X)y; - ¥)
wy = il = ro—y

i(xi - X)? g

i=1

It's not surprising that r is related to wj, sinceris a
measure of linear association.

Concise way of writing w( and wy:

o
y
wj:r— w

Ox

O *



Proof that wy = r%

By definition, we have:



Proof that wy = r%

By definition, we have:

Thus:



Proof that wy = r%

By definition, we have:

1fx %2

=

Thus:
n
no? = Z(xl. - x)?
i=1
On the another hand, we also have:
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That leads to:



Proof that wy = r%

By definition, we have:
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Thus:
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no; = Z(Xi - X)
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On the another hand, we also have:

That leads to:



Proof that w; = r% (continued)

X

By definition, we have:
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Proof that w; = r% (continued)

X

By definition, we have:
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Proof that w; = r% (continued)

X

By definition, we have:

Sisa (X = X)y; - ¥)
T 2?21 (X,' - )_()2
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Interpreting the slope
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o, and o, are always non-negative. As a result, the sign of
the slope is determined by the sign of r.

As the y values get more spread out, o, increases and so
does the slope.

As the x values get more spread out, o, increases and the
slope decreases.



Interpreting the intercept

What is qu(H*()'())?

Wwox
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Interpreting the intercept

What is qu(H*()'())?

Wwox
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Ryg(H(R0) = = (v, = (wg + wiX)?
i=1



Interpreting the intercept
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What is qu(H*()'())?
Ryg(H*(R) = = (- (WG + Wi )
i=1

Z -(y- Wx+wx))

i=1

(H (x))
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Interpreting the intercept
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What is qu(H*()'())?
Ryg(H*(R) = = (- (WG + Wi )
i=1

Z - (V - wiX + w;X)) %i

i=1 i=1

(H (x))
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Actually H*(x) =

7\2 - 42
-y =0,



Discussion Question

We fit a linear prediction rule for salary given years of
experience. Then everyone gets a $5,000 raise. Which
of these happens?

a) slope increases, intercept increases
b) slope decreases, intercept increases
c) slope stays same, intercept increases

d) slope stays same, intercept stays same




Discussion Question

We fit a linear prediction rule for salary given years of
experience. Then everyone gets a $5,000 raise. Which
of these happens?

a) slope increases, intercept increases
b) slope decreases, intercept increases
c) slope stays same, intercept increases

d) slope stays same, intercept stays same

Answer: C



Linear algebra review



Wait... why do we need linear algebra?

Soon, we'll want to make predictions using more than one
feature (e.g. predicting salary using years of experience
and GPA).

Thinking about linear regression in terms of linear
algebra will allow us to find prediction rules that
use multiple features.
are non-linear.

Before we dive in, let's review.

There can be linear algebra on the midterm!!



Matrices

An m x n matrix is a table of numbers with m rows and n
columns.

We use upper-case letters for matrices.
12 3
A= [4 5 6]

AT denotes the transpose of A:
4
5
6

2

WN =



Matrix addition and scalar multiplication

We can add two matrices only if they are the same size.

Addition occurs elementwise:

ool 3G Y5

Scalar multiplication occurs elementwise, too:

#fi 5 -l o 7



Matrix-matrix multiplication

We can multiply two matrices A and B only if

# columns in A = # rows in B.

If Ais mxnand B is n x p, the result is m x p.
This is very useful.

The ij entry of the product is:

n
(AB); = Z AikBrj
k=1



Some matrix properties
Multiplication is Distributive:
A(B +C) = AB + AC
Multiplication is Associative:
(AB)C = A(BC)
Multiplication is not commutative:

AB # BA

Transpose of sum:
(A+B) =AT + BT

Transpose of product:
(AB)" = BTAT



Vectors

An vector in R" is an n x 1 matrix.

We use lower-case letters for vectors.

Vector addition and scalar multiplication occur
elementwise.



Geometric meaning of vectors

Avector v = (v,,...,v,) is an arrow to the point (v,, ...

from the origin.

The length, or norm, of v is ||V]| = \/v12 VL + v2,

'"n

)



Dot products

The dot product of two vectors i and v in R" is denoted
by:

- - -»T

ug-v=0'v

Definition:

n
u.v:Zuivi=u1V1+U2V2+...+U v
i=1

The result is a scalar!



Discussion Question

Which of these is another expression for the length of ii?
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Discussion Question

Which of these is another expression for the length of ii?
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Answer: C



Properties of the dot product

Commutative:
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Matrix-vector multiplication
Special case of matrix-matrix multiplication.

Result is always a vector with same number of rows as the
matrix.

One view: a “mixture” of the columns.

U A B AR RN

Another view: a dot product with the rows.



Discussion Question

If Ais an m x n matrix and v is a vector in R", what are
the dimensions of the product vTATAvV?

a) m xn (matrix)

b) nx 1 (vector)

c) 1x1(scalar)

d) The product is undefined.




Discussion Question

If Ais an m x n matrix and v is a vector in R", what are
the dimensions of the product vTATAvV?

a) m xn (matrix)

b) nx 1 (vector)

c) 1x1(scalar)

d) The product is undefined.

Answer: C



Summary



Summary, next time

The correlation coefficient, r, measures the strength of
the linear association between two variables x and y.

We can re-write the optimal parameters for the linear
prediction rule (under squared loss) as

We can then make predictions using H*(x) = wg + wyX.

We will need linear algebra in order to generalize
regression to work with multiple features.

Next time: Formulate linear regression in terms of linear
algebra.



