Lecture 9 - More Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego

Midterm study strategy

- Review the solutions to previous homeworks and groupworks.
- Identify which concepts are still iffy. Re-watch lecture, post on Campuswire, come to office hours.
- Look at the past exams at https://dsc40a.com/resources.
- Study in groups.
- Make a "cheat sheet".

Agenda

- Recap of Lecture 8.
- Correlation.
- Practical demo.

Recap of Lecture 8

Linear prediction rules

- New: Instead of predicting the same future value (e.g. salary) h for everyone, we will now use a prediction rule H(x) that uses features, i.e. information about individuals, to make predictions.
- We decided to use a **linear** prediction rule, which is of the form $H(x) = w_0 + w_1 x$.

 \triangleright w₀ and w₁ are called **parameters**.

Finding the best linear prediction rule

In order to find the best linear prediction rule, we need to pick a loss function and minimize the corresponding empirical risk.

We chose squared loss, (y_i - H(x_i))², as our loss function.

• The MSE is a function R_{sq} of a function *H*.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

But since H is linear, we know $H(x_i) = w_0 + w_1 x_i$.

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Finding the best linear prediction rule

• Our goal last lecture was to find the slope w_1^* and intercept w_0^* that minimize the MSE, $R_{sq}(w_0, w_1)$:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

We did so using multivariable calculus.

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

To make predictions: $H^*(x) = w_0^* + w_1^*(x)$.

Example

Terminology

- ► x: features.
- *y*: response variable.
- \blacktriangleright w₀, w₁: parameters.
- \blacktriangleright w_0^* , w_1^* : optimal parameters.
 - Optimal because they minimize mean squared error.
- The process of finding the optimal parameters for a given prediction rule and dataset is called "fitting to the data".

►
$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$
: mean squared error,
empirical risk.

Discussion Question

Consider a dataset with just two points, (2, 5) and (4, 15). Suppose we want to fit a linear prediction rule to this dataset by minimizing mean squared error. What are the values of w_0^* and w_1^* that minimize mean squared error?

a)
$$w_0^* = 2, w_1^* = 5$$

b)
$$w_0^* = 3, w_1^* = 10$$

d)
$$w_0^* = -5, w_1^* = 5$$

e) Impossible to tell

To answer, go to menti.com and enter the code 4821 5997.

Correlation

Correlation coefficient

- In DSC 10, you were introduced to the idea of correlation.
 It is a measure of the strength of the linear association of two variables, x and y.
 - Intuitively, it is a measure of how tightly clustered a scatter plot is around a straight line.
- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.

$$x_i$$
 in standard units: $\frac{x_i - \bar{x}}{\sigma_x}$

Properties of the correlation coefficient r

r has no units.

- It ranges between -1 and 1.
 - r = 1 indicates a perfect positive linear association (x and y lie exactly on a straight line that is sloped upwards).
 - r = -1 indicates a perfect negative linear association between x and y.
 - The closer r is to 0, the weaker the linear association between x and y is.
 - r says nothing about non-linear association.
- Correlation != causation.

Another way to express W_1^*

It turns out that w₁^{*}, the optimal slope for the linear prediction rule, can be written in terms of r!

$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = r\frac{\sigma_{y}}{\sigma_{x}}$$

- It's not surprising that r is related to w₁^{*}, since r is a measure of linear association.
- Concise way of writing w_0^* and w_1^* :

$$w_1^* = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

Proof that
$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$

Interpreting the slope

- σ_y and σ_x are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_y increases and so does the slope.
- As the x values get more spread out, σ_x increases and the slope decreases.

Interpreting the intercept

• What is $H^*(\bar{x})$?

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?

a) slope increases, intercept increases

- b) slope decreases, intercept increases
- c) slope stays same, intercept increases

d) slope stays same, intercept stays same To answer, go to menti.com and enter the code 4821 5997. **Practical demo**

Follow along with the demo by clicking the **code** link on the course website next to Lecture 9.

Summary

Summary

- The correlation coefficient, r, measures the strength of the linear association between two variables x and y.
- We can re-write the optimal parameters for the linear prediction rule (under squared loss) as

$$w_1^* = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

- We can then make predictions using $H^*(x) = w_0^* + w_1^*x$.
- Next time: Formulate linear regression in terms of linear algebra.