Lecture 9 - More Simple Linear Regression

DSC 40A, Fall 2022 @ UC San Diego

Midterm study strategy

- Review the solutions to previous homeworks and groupworks.
- Identify which concepts are still iffy. Re-watch lecture, post on Campuswire, come to office hours.
- Look at the past exams at https://dsc4ea.com/resources.
- Study in groups.
> Make a "cheat sheet".

Agenda

- Recap of Lecture 8.
- Correlation.
- Practical demo.

Recap of Lecture 8

Linear prediction rules

- New: Instead of predicting the same future value (e.g. salary) h for everyone, we will now use a prediction rule $H(x)$ that uses features, i.e. information about individuals, to make predictions.
\Rightarrow We decided to use a linear prediction rule, which is of the form $H(x)=w_{0}+w_{1} x$.
${ }^{\nabla} w_{0}$ and w_{1} are called parameters.

Before

Now

Finding the best linear prediction rule

- In order to find the best linear prediction rule, we need to pick a loss function and minimize the corresponding empirical risk.
- We chose squared loss, $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$, as our loss function.
\Rightarrow The MSE is a function $R_{\text {sq }}$ of a function H.

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

\Rightarrow But since H is linear, we know $H\left(x_{i}\right)=w_{0}+w_{1} x_{i}$.

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Finding the best linear prediction rule

- Our goal last lecture was to find the slope w_{1}^{*} and intercept w_{0}^{*} that minimize the MSE, $R_{\text {sq }}\left(w_{0}, w_{1}\right)$:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- We did so using multivariable calculus.

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

- To make predictions: $H^{*}(x)=w_{0}^{*}+w_{1}^{*}(x)$.

Example

$$
\begin{array}{llllll}
\hline x_{i} & y_{i} & \left(x_{i}-\bar{x}\right) & \left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \left(x_{i}-\bar{x}\right)^{2} \\
\hline 3 & 7 & & & & \\
4 & 3 & & & & \\
8 & 2 & & & &
\end{array}
$$

Terminology

> x : features.
> y : response variable.
${ }^{-} w_{0}, w_{1}$: parameters.
${ }^{-} w_{0}^{*}, w_{1}^{*}$: optimal parameters.

- Optimal because they minimize mean squared error.
- The process of finding the optimal parameters for a given prediction rule and dataset is called "fitting to the data".
$\Rightarrow R_{\text {sq }}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$: mean squared error, empirical risk.

Discussion Question

Consider a dataset with just two points, $(2,5)$ and $(4,15)$. Suppose we want to fit a linear prediction rule to this dataset by minimizing mean squared error.
What are the values of w_{0}^{*} and w_{1}^{*} that minimize mean squared error?
a) $w_{0}^{*}=2, w_{1}^{*}=5$
b) $w_{0}^{*}=3, w_{1}^{*}=10$
c) $w_{0}^{*}=-2, w_{1}^{*}=5$
d) $w_{0}^{*}=-5, w_{1}^{*}=5$
e) Impossible to tell

To answer, go to menti.com and enter the code 4821 5997.

Correlation

Correlation coefficient

- In DSC 10, you were introduced to the idea of correlation.
$>$ It is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it is a measure of how tightly clustered a scatter plot is around a straight line.
- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
x_{i} in standard units: $\frac{x_{i}-\bar{x}}{\sigma_{x}}$.

Properties of the correlation coefficient r

- r has no units.
- It ranges between -1 and 1 .
$r=1$ indicates a perfect positive linear association (x and y lie exactly on a straight line that is sloped upwards).
- $r=-1$ indicates a perfect negative linear association between x and y.
- The closer r is to 0 , the weaker the linear association between x and y is.
- r says nothing about non-linear association.
- Correlation != causation.

Another way to express w_{1}^{*}

- It turns out that w_{1}^{*}, the optimal slope for the linear prediction rule, can be written in terms of r !

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- It's not surprising that r is related to w_{1}^{*}, since r is a measure of linear association.
- Concise way of writing w_{0}^{*} and w_{1}^{*} :

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$

Interpreting the slope

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- σ_{y} and σ_{x} are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_{y} increases and so does the slope.
- As the x values get more spread out, σ_{x} increases and the slope decreases.

Interpreting the intercept

$$
w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

What is $H^{*}(\bar{x})$?

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a $\$ 5,000$ raise. Which of these happens?
a) slope increases, intercept increases
b) slope decreases, intercept increases
c) slope stays same, intercept increases
d) slope stays same, intercept stays same

To answer, go to menti.com and enter the code 4821 5997.

Practical demo

Follow along with the demo by clicking the code link on the course website next to Lecture 9.

Summary

Summary

- The correlation coefficient, r, measures the strength of the linear association between two variables x and y.
- We can re-write the optimal parameters for the linear prediction rule (under squared loss) as

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

- We can then make predictions using $H^{*}(x)=w_{0}^{*}+w_{1}^{*} x$.
- Next time: Formulate linear regression in terms of linear algebra.

