Lecture 10 - Linear Algebra and Regression

DSC 40A, Fall 2022 @ UC San Diego

Midterm study strategy

- Review the solutions to previous assignments.
- Identify which concepts are still iffy. Re-watch lecture, post on Campuswire, come to office hours.
- Look at the past exams at https://dsc40a.com/resources.
- Study in groups.
- Make a "cheat sheet".

Agenda

- Linear Algebra Review.
- Mean squared error, revisited

Linear algebra review

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
- use multiple features.
- are non-linear.
- Before we dive in, let's review.

Matrices \# rows

- An $m \times n$ matrix is a table of numbers with m rows and n columns. $>$ \#cols
- We use upper-case letters for matrices.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]_{2 \times 3}
$$

- A^{T} denotes the transpose of A :

$$
A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]_{3 \times 2}
$$

Matrix addition and scalar multiplication

- We can add two matrices only if they are the same size.
- Addition occurs elementwise:

$$
A_{2 \times 2}+B_{2} \times 3
$$

$$
\begin{array}{ccc}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]+\left[\begin{array}{ccc}
7 & 8 & 9 \\
-1 & -2 & -3
\end{array}\right]=\left[\begin{array}{ccc}
8 & 10 & 12 \\
3 & 3 & 3
\end{array}\right]_{2 \times 3}} & 2 \times 3
\end{array}
$$

- Scalar multiplication occurs elementwise, too:

$$
2 \cdot\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right]
$$

Matrix-matrix multiplication
We can multiply two matrices A and B only if \# columns in $A=\#$ rows in B.

If A is $m \times n$ and B is $n \times p$, the result is $m \times p$. - This is very useful.

The if entry of the product is:

$$
\left.\begin{array}{c}
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j} \\
2
\end{array}\right]_{3 \times 2}^{1}\left[\begin{array}{ll}
1 \\
1 & 2 \\
-1
\end{array}\right]_{2 \times 2}=\left[\begin{array}{ll}
1 & 2 \\
3 & 3 \\
5 & 4
\end{array}\right]_{3 \times 2}
$$

Some matrix properties
Multiplication is Distributive:

$$
A(B+C)=A B+A C
$$

Multiplication is Associative:

$$
(A B) C=A(B C)
$$

Multiplication is not commutative:

$$
A B \neq B A
$$

$$
\begin{array}{ll}
A_{2 \times 3} & B_{3 \times 4} \\
A B_{2 \times 3 \times 4} & B A \times \\
3 \times 4 & A \times 3
\end{array}
$$

Transpose of sum:

$$
(A+B)^{T}=A^{T}+B^{T}
$$

Transpose of product:

$$
(A B)^{T}=\underbrace{B^{T}}_{\sim} A_{\sim}^{T}
$$

Vectors
An vector in \mathbb{R}^{n} is an $n \times 1$ matrix.

We use lower-case letters for vectors.

$$
\vec{v}=\left[\begin{array}{c}
2 \\
1 \\
5 \\
-3
\end{array}\right]
$$

Vector addition and scalar multiplication occur elementwise.

$$
2\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
6
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]+\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
4 \\
4 \\
0
\end{array}\right]
$$

Geometric meaning of vectors
A vector $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ is an arrow to the point $\left(v_{1}, \ldots, v_{n}\right)$ from the origin.

The length, or norm, of \vec{v} is $\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}$.

Dot products

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 4
\end{array}\right]
$$

The dot product of two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} is denoted by:

Definition:

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v} \\
& \downarrow \\
& \text { dot }
\end{aligned} \rightarrow \text { matrix malt }
$$

$$
\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

$$
\begin{aligned}
& \overrightarrow{\vec{u}}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \quad \begin{array}{ll}
\vec{u}^{\top} & =\left[\begin{array}{lll}
u_{1} & \ldots & u_{n}
\end{array}\right] \\
& \vec{u} \vec{v}
\end{array}=\left[\begin{array}{lll}
u_{1} & \ldots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]_{n \times 1} \\
&=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=|x|
\end{aligned}
$$

Discussion Question
Which of these is another expression for the length of \vec{u} ?

$$
\begin{array}{ll}
\downarrow & \vec{u}_{n \times 1} \vec{x}^{2} \quad \\
\begin{array}{ll}
\text { a) } \vec{u} \cdot \vec{u} \\
\text { b) } \sqrt{\vec{u}^{2}} & \vec{u}^{2}=\vec{u}_{n \times 1}
\end{array} \quad \text { does not mean }
\end{array}
$$

c) $\sqrt{\vec{u} \cdot \vec{u}}$
d) \vec{u}^{2}

$$
\vec{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

To answer, go to menti.com and enter the code 4821 5997.

Properties of the dot product

- Commutative:

$$
\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}=\vec{u}^{T} \vec{v}=\vec{v}^{\top} \vec{u}
$$

- Distributive:

$$
\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}
$$

Matrix-vector multiplication

- Special case of matrix-matrix multiplication.
- Result is always a vector with same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=a_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+a_{2}\left[\begin{array}{l}
2 \\
4
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

- Another view: a dot product with the rows.

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
1 a_{1}+2 a_{2}+1 \times a_{3} \\
3 a_{1}+4 a_{2}+5 a_{3}
\end{array}\right]
$$

Discussion Question

If A is an $m \times n$ matrix and \vec{v} is a vector in \mathbb{R}^{n}, what are the dimensions of the product $\vec{v}^{T} A^{T} A \vec{v}$?
a) $m \times n$ (matrix)
b) $n \times 1$ (vector)
c) 1×1 (scalar)
d) The product is undefined.

To answer, go to menti.com and enter the code 4821 5997.

Matrices and functions

\Rightarrow Suppose A is an $m \times n$ matrix and \vec{x} is a vector in \mathbb{R}^{n}.
\Rightarrow Then, the function $f(\vec{x})=A x$ is a linear function that maps elements in \mathbb{R}^{n} to elements in \mathbb{R}^{m}.
\Rightarrow The input to f is a vector, and so is the output.

- Key idea: matrix-vector multiplication can be thought of as applying a linear function to a vector.

Mean squared error, revisited

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- If the intermediate steps get confusing, think back to this overarching goal.
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
- use multiple features.
- are non-linear.
\Rightarrow Let's start by expressing $R_{\text {sq }}$ in terms of matrices and vectors.

Regression and linear algebra

- We chose the parameters for our prediction rule

$$
H(x)=w_{0}+w_{1} x
$$

by finding the w_{0}^{*} and w_{1}^{*} that minimized mean squared error:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2} .
$$

- This is kind of like the formula for the length of a vector!

Regression and linear algebra

Let's define a few new terms:
\Rightarrow The observation vector is the vector $\vec{y} \in \mathbb{R}^{n}$ with components y_{i}. This is the vector of observed/"actual" values.
\Rightarrow The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
\Rightarrow The error vector is the vector $\vec{e} \in \mathbb{R}^{n}$ with components $e_{i}=y_{i}-H\left(x_{i}\right)$. This is the vector of (signed) errors.

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^{n}$ with components y_{i}. This is the vector of observed/"actual" values.
- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^{n}$ with components $e_{i}=y_{i}-H\left(x_{i}\right)$. This is the vector of (signed) errors.
- We can rewrite the mean squared error as:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}=\frac{1}{n}\|\vec{e}\|^{2}=\frac{1}{n}\|\vec{y}-\vec{h}\|^{2}
$$

The hypothesis vector

- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
- The hypothesis vector \vec{h} can be written

$$
\vec{h}=\left[\begin{array}{c}
H\left(x_{1}\right) \\
H\left(x_{2}\right) \\
\square \\
H\left(x_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
w_{0}+w_{1} x_{1} \\
w_{0}+w_{1} x_{2} \\
\square \\
w_{0}+w_{1} x_{n}
\end{array}\right]=
$$

Rewriting the mean squared error

\Rightarrow Define the design matrix X to be the $n \times 2$ matrix

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\text { Q } & \text { ? } \\
1 & x_{n}
\end{array}\right] .
$$

- Define the parameter vector $\vec{w} \in \mathbb{R}^{2}$ to be $\vec{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right]$.
- Then $\vec{h}=X \vec{w}$, so the mean squared error becomes:

$$
\begin{aligned}
& R_{\mathrm{sq}}(H)=\frac{1}{n}\|\vec{y}-\vec{h}\|^{2} \\
& R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
\end{aligned}
$$

Mean squared error, reformulated

- Before, our goal was to find the values of w_{0} and w_{1} that minimize

$$
R_{s q}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- The results:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

Now, our goal is to find the vector \vec{w} that minimizes

$$
R_{s q}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

$\stackrel{\text { Both versions of }}{ } R_{s q}$ are equivalent.

Summary

Summary, next time

- The correlation coefficient, r, measures the strength of the linear association between two variables x and y.
- We can re-write the optimal parameters for the linear prediction rule (under squared loss) as

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

\Rightarrow We can then make predictions using $H^{*}(x)=w_{0}^{*}+w_{1}^{*} x$.

- We will need linear algebra in order to generalize regression to work with multiple features.
- Next time: Formulate linear regression in terms of linear algebra.

Summary

Summary

- We will need linear algebra in order to generalize regression to work with multiple features.
- We used linear algebra to rewrite the mean squared error for the prediction rule $H(x)=w_{0}+w_{1} x$ as

$$
R_{s q}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

$\Rightarrow X$ is called the design matrix, \vec{w} is called the parameter vector, \vec{y} is called the observation vector, and $\vec{h}=X \vec{W}$ is called the hypothesis vector.

