
Lecture 10 – Linear Algebra and Regression

DSC 40A, Fall 2022 @ UC San Diego



Midterm study strategy

▶ Review the solutions to previous assignments.▶ Identify which concepts are still iffy. Re-watch lecture,
post on Campuswire, come to office hours.▶ Look at the past exams at
https://dsc40a.com/resources.▶ Study in groups.▶ Make a “cheat sheet”.



Agenda▶ Linear Algebra Review.▶ Mean squared error, revisited



Linear algebra review



Wait... why do we need linear algebra?

▶ Soon, we’ll want to make predictions using more than one
feature (e.g. predicting salary using years of experience
and GPA).▶ Thinking about linear regression in terms of linear
algebra will allow us to find prediction rules that▶ use multiple features.▶ are non-linear.▶ Before we dive in, let’s review.



Matrices▶ An 𝑚 × 𝑛 matrix is a table of numbers with 𝑚 rows and 𝑛
columns.▶ We use upper-case letters for matrices.𝐴 = [1 2 34 5 6]▶ 𝐴𝑇 denotes the transpose of 𝐴:𝐴𝑇 = [1 42 53 6]



Matrix addition and scalar multiplication▶ We can add two matrices only if they are the same size.▶ Addition occurs elementwise:[1 2 34 5 6] + [ 7 8 9−1 −2 −3] = [8 10 123 3 3 ]▶ Scalar multiplication occurs elementwise, too:2 ⋅ [1 2 34 5 6] = [2 4 68 10 12]



Matrix-matrix multiplication▶ We can multiply two matrices 𝐴 and 𝐵 only if# columns in 𝐴 = # rows in 𝐵.▶ If 𝐴 is 𝑚 × 𝑛 and 𝐵 is 𝑛 × 𝑝, the result is 𝑚 × 𝑝.▶ This is very useful.▶ The 𝑖𝑗 entry of the product is:(𝐴𝐵)𝑖𝑗 = 𝑛∑𝑘=1 𝐴𝑖𝑘𝐵𝑘𝑗



Some matrix properties▶ Multiplication is Distributive:𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶▶ Multiplication is Associative:(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)▶ Multiplication is not commutative:𝐴𝐵 ≠ 𝐵𝐴▶ Transpose of sum: (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇▶ Transpose of product: (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇



Vectors▶ An vector in ℝ𝑛 is an 𝑛 × 1 matrix.▶ We use lower-case letters for vectors.

⃗𝑣 = [ 215−3]▶ Vector addition and scalar multiplication occur
elementwise.



Geometric meaning of vectors▶ A vector ⃗𝑣 = (𝑣1, … , 𝑣𝑛) is an arrow to the point (𝑣1, … , 𝑣𝑛)
from the origin.

▶ The length, or norm, of ⃗𝑣 is ‖ ⃗𝑣‖ = √𝑣21 + 𝑣22 + … + 𝑣2𝑛 .



Dot products▶ The dot product of two vectors �⃗� and ⃗𝑣 in ℝ𝑛 is denoted
by: �⃗� ⋅ ⃗𝑣 = �⃗�𝑇 ⃗𝑣▶ Definition: �⃗� ⋅ ⃗𝑣 = 𝑛∑𝑖=1 𝑢𝑖𝑣𝑖 = 𝑢1𝑣1 + 𝑢2𝑣2 + … + 𝑢𝑛𝑣𝑛▶ The result is a scalar!



Discussion Question

Which of these is another expression for the length of �⃗�?
a) �⃗� ⋅ �⃗�
b) √�⃗�2
c) √�⃗� ⋅ �⃗�
d) �⃗�2
To answer, go to menti.com and enter the code 4821
5997.



Properties of the dot product▶ Commutative: �⃗� ⋅ ⃗𝑣 = ⃗𝑣 ⋅ �⃗� = �⃗�𝑇 ⃗𝑣 = ⃗𝑣𝑇 �⃗�▶ Distributive: �⃗� ⋅ ( ⃗𝑣 + �⃗�) = �⃗� ⋅ ⃗𝑣 + �⃗� ⋅ �⃗�



Matrix-vector multiplication▶ Special case of matrix-matrix multiplication.▶ Result is always a vector with same number of rows as the
matrix.▶ One view: a “mixture” of the columns.[1 2 13 4 5] [𝑎1𝑎2𝑎3] = 𝑎1 [13] + 𝑎2 [24] + 𝑎3 [15]▶ Another view: a dot product with the rows.



Discussion Question

If 𝐴 is an 𝑚 × 𝑛 matrix and ⃗𝑣 is a vector in ℝ𝑛, what are
the dimensions of the product ⃗𝑣𝑇𝐴𝑇𝐴 ⃗𝑣?
a) 𝑚 × 𝑛 (matrix)
b) 𝑛 × 1 (vector)
c) 1 × 1 (scalar)
d) The product is undefined.
To answer, go to menti.com and enter the code 4821
5997.



Matrices and functions▶ Suppose 𝐴 is an 𝑚 × 𝑛 matrix and ⃗𝑥 is a vector in ℝ𝑛.▶ Then, the function 𝑓( ⃗𝑥) = 𝐴𝑥 is a linear function that maps
elements in ℝ𝑛 to elements in ℝ𝑚.▶ The input to 𝑓 is a vector, and so is the output.▶ Key idea: matrix-vector multiplication can be thought of
as applying a linear function to a vector.



Mean squared error, revisited



Wait... why do we need linear algebra?▶ Soon, we’ll want to make predictions using more than one
feature (e.g. predicting salary using years of experience
and GPA).▶ If the intermediate steps get confusing, think back to

this overarching goal.▶ Thinking about linear regression in terms of linear
algebra will allow us to find prediction rules that▶ use multiple features.▶ are non-linear.▶ Let’s start by expressing 𝑅𝑠𝑞 in terms of matrices and
vectors.



Regression and linear algebra▶ We chose the parameters for our prediction rule𝐻(𝑥) = 𝑤0 + 𝑤1𝑥
by finding the 𝑤∗0 and 𝑤∗1 that minimized mean squared
error: 𝑅sq(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2.▶ This is kind of like the formula for the length of a vector!



Regression and linear algebra
Let’s define a few new terms:▶ The observation vector is the vector ⃗𝑦 ∈ ℝ𝑛 with

components 𝑦𝑖. This is the vector of observed/“actual”
values.▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.▶ The error vector is the vector ⃗𝑒 ∈ ℝ𝑛 with components𝑒𝑖 = 𝑦𝑖 − 𝐻(𝑥𝑖). This is the vector of (signed) errors.



Regression and linear algebra
Let’s define a few new terms:▶ The observation vector is the vector ⃗𝑦 ∈ ℝ𝑛 with

components 𝑦𝑖. This is the vector of observed/“actual”
values.▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.▶ The error vector is the vector ⃗𝑒 ∈ ℝ𝑛 with components𝑒𝑖 = 𝑦𝑖 − 𝐻(𝑥𝑖). This is the vector of (signed) errors.▶ We can rewrite the mean squared error as:𝑅sq(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2 = 1𝑛|| ⃗𝑒||2 = 1𝑛|| ⃗𝑦 − ℎ⃗||2.



The hypothesis vector▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.▶ The hypothesis vector ℎ⃗ can be written

ℎ⃗ = [𝐻(𝑥1)𝐻(𝑥2)�𝐻(𝑥𝑛)] = [
𝑤0 + 𝑤1𝑥1𝑤0 + 𝑤1𝑥2�𝑤0 + 𝑤1𝑥𝑛] =



Rewriting the mean squared error▶ Define the design matrix 𝑋 to be the 𝑛 × 2 matrix
𝑋 = [1 𝑥11 𝑥2� �1 𝑥𝑛] .▶ Define the parameter vector �⃗� ∈ ℝ2 to be �⃗� = [𝑤0𝑤1] .▶ Then ℎ⃗ = 𝑋�⃗�, so the mean squared error becomes:𝑅sq(𝐻) = 1𝑛|| ⃗𝑦 − ℎ⃗||2𝑅sq(�⃗�) = 1𝑛|| ⃗𝑦 − 𝑋�⃗�||2



Mean squared error, reformulated▶ Before, our goal was to find the values of 𝑤0 and 𝑤1 that
minimize 𝑅𝑠𝑞(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2▶ The results:𝑤∗1 = ∑𝑛𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)∑𝑛𝑖=1(𝑥𝑖 − �̄�)2 = 𝑟 𝜎𝑦𝜎𝑥 𝑤∗0 = �̄� − 𝑤∗1�̄�▶ Now, our goal is to find the vector �⃗� that minimizes𝑅𝑠𝑞(�⃗�) = 1𝑛|| ⃗𝑦 − 𝑋�⃗�||2▶ Both versions of 𝑅𝑠𝑞 are equivalent.



Summary



Summary, next time▶ The correlation coefficient, 𝑟, measures the strength of
the linear association between two variables 𝑥 and 𝑦.▶ We can re-write the optimal parameters for the linear
prediction rule (under squared loss) as𝑤∗1 = 𝑟 𝜎𝑦𝜎𝑥 𝑤∗0 = �̄� − 𝑤∗1�̄�▶ We can then make predictions using 𝐻∗(𝑥) = 𝑤∗0 + 𝑤∗1𝑥.▶ We will need linear algebra in order to generalize
regression to work with multiple features.▶ Next time: Formulate linear regression in terms of linear
algebra.



Summary



Summary

▶ We will need linear algebra in order to generalize
regression to work with multiple features.▶ We used linear algebra to rewrite the mean squared error
for the prediction rule 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 as𝑅𝑠𝑞(�⃗�) = 1𝑛|| ⃗𝑦 − 𝑋�⃗�||2▶ X is called the design matrix, �⃗� is called the

parameter vector, ⃗𝑦 is called the observation vector,
and ℎ⃗ = 𝑋�⃗� is called the hypothesis vector.


