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Agenda▶ Formulate mean squared error in terms of linear algebra.▶ Minimize mean squared error using linear algebra.



Wait... why do we need linear algebra?▶ Soon, we’ll want to make predictions using more than one
feature (e.g. predicting salary using years of experience
and GPA).▶ If the intermediate steps get confusing, think back to

this overarching goal.▶ Thinking about linear regression in terms of linear
algebra will allow us to find prediction rules that▶ use multiple features.▶ are non-linear.▶ Let’s start by expressing 𝑅𝑠𝑞 in terms of matrices and
vectors.



Regression and linear algebra▶ We chose the parameters for our prediction rule𝐻(𝑥) = 𝑤0 + 𝑤1𝑥
by finding the 𝑤∗0 and 𝑤∗1 that minimized mean squared
error: 𝑅sq(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2.▶ This is kind of like the formula for the length of a vector!



Regression and linear algebra
Let’s define a few new terms:▶ The observation vector is the vector ⃗𝑦 ∈ ℝ𝑛 with

components 𝑦𝑖. This is the vector of observed/“actual”
values.▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.▶ The error vector is the vector ⃗𝑒 ∈ ℝ𝑛 with components𝑒𝑖 = 𝑦𝑖 − 𝐻(𝑥𝑖). This is the vector of (signed) errors.



Regression and linear algebra
Let’s define a few new terms:▶ The observation vector is the vector ⃗𝑦 ∈ ℝ𝑛 with

components 𝑦𝑖. This is the vector of observed/“actual”
values.▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.▶ The error vector is the vector ⃗𝑒 ∈ ℝ𝑛 with components𝑒𝑖 = 𝑦𝑖 − 𝐻(𝑥𝑖). This is the vector of (signed) errors.▶ We can rewrite the mean squared error as:𝑅sq(𝐻) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − 𝐻(𝑥𝑖))2 = 1𝑛|| ⃗𝑒||2 = 1𝑛|| ⃗𝑦 − ℎ⃗||2.



The hypothesis vector▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.▶ The hypothesis vector ℎ⃗ can be written

ℎ⃗ = ⎡⎢⎢⎣
𝐻(𝑥1)𝐻(𝑥2)̇̇̇𝐻(𝑥𝑛)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝑤0 + 𝑤1𝑥1𝑤0 + 𝑤1𝑥2̇̇̇𝑤0 + 𝑤1𝑥𝑛

⎤⎥⎥⎦ =



Rewriting the mean squared error▶ Define the design matrix 𝑋 to be the 𝑛 × 2 matrix
𝑋 = [1 𝑥11 𝑥2̇ ̇̇ ̇1 𝑥𝑛] .▶ Define the parameter vector 𝑤⃗ ∈ ℝ2 to be 𝑤⃗ = [𝑤0𝑤1] .▶ Then ℎ⃗ = 𝑋𝑤⃗, so the mean squared error becomes:𝑅sq(𝐻) = 1𝑛|| ⃗𝑦 − ℎ⃗||2𝑅sq(𝑤⃗) = 1𝑛|| ⃗𝑦 − 𝑋𝑤⃗||2



Mean squared error, reformulated▶ Before, our goal was to find the values of 𝑤0 and 𝑤1 that
minimize 𝑅𝑠𝑞(𝑤0, 𝑤1) = 1𝑛 𝑛∑𝑖=1 (𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))2▶ The results:𝑤∗1 = ∑𝑛𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)∑𝑛𝑖=1(𝑥𝑖 − 𝑥̄)2 = 𝑟 𝜎𝑦𝜎𝑥 𝑤∗0 = 𝑦̄ − 𝑤∗1𝑥̄▶ Now, our goal is to find the vector 𝑤⃗ that minimizes𝑅𝑠𝑞(𝑤⃗) = 1𝑛|| ⃗𝑦 − 𝑋𝑤⃗||2▶ Both versions of 𝑅𝑠𝑞 are equivalent.



Spoiler alert...

▶ Goal: find the vector 𝑤⃗ that minimizes𝑅𝑠𝑞(𝑤⃗) = 1𝑛|| ⃗𝑦 − 𝑋𝑤⃗||2▶ Spoiler alert: the answer1 is⃗𝑤∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦▶ Let’s look at this formula in action in a notebook.▶ Then we’ll prove it ourselves by hand.

1assuming 𝑋𝑇𝑋 is invertible



Minimizing mean squared error, again



Some key linear algebra facts
If 𝐴 and 𝐵 are matrices, and 𝑢⃗, ⃗𝑣, 𝑤⃗, ⃗𝑧 are vectors:▶ (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇▶ (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇▶ 𝑢⃗ ⋅ ⃗𝑣 = ⃗𝑣 ⋅ 𝑢⃗ = 𝑢⃗𝑇 ⃗𝑣 = ⃗𝑣𝑇 𝑢⃗▶ ‖𝑢⃗‖2 = 𝑢⃗ ⋅ 𝑢⃗▶ (𝑢⃗ + ⃗𝑣) ⋅ (𝑤⃗ + ⃗𝑧) = 𝑢⃗ ⋅ 𝑤⃗ + 𝑢⃗ ⋅ ⃗𝑧 + ⃗𝑣 ⋅ 𝑤⃗ + ⃗𝑣 ⋅ ⃗𝑧



Goal▶ We want to minimize the mean squared error:𝑅sq(𝑤⃗) = 1𝑛‖ ⃗𝑦 − 𝑋𝑤⃗‖2▶ Strategy: Calculus.▶ Problem: This is a function of a vector. What does it even
mean to take the derivative of 𝑅sq(𝑤⃗) with respect to a
vector 𝑤⃗?



A function of a vector▶ Solution: A function of a vector is really just a function of
multiple variables, which are the components of the
vector. In other words,𝑅sq(𝑤⃗) = 𝑅sq(𝑤0, 𝑤1, … , 𝑤𝑑)
where 𝑤0,𝑤1, … , 𝑤𝑑 are the entries of the vector 𝑤⃗.2▶ We know how to deal with derivatives of multivariable
functions: the gradient!

2In our case, 𝑤⃗ has just two components, 𝑤0 and 𝑤1. We’ll be more
general since we eventually want to use prediction rules with even more
parameters.



The gradient with respect to a vector▶ The gradient of 𝑅sq(𝑤⃗) with respect to 𝑤⃗ is the vector of
partial derivatives:

∇𝑤⃗𝑅sq(𝑤⃗) = 𝑑𝑅sq𝑑𝑤⃗ = ⎡⎢⎢⎢⎢⎢⎢⎣

𝜕𝑅sq𝜕𝑤0𝜕𝑅sq𝜕𝑤1
...𝜕𝑅sq𝜕𝑤𝑑

⎤⎥⎥⎥⎥⎥⎥⎦
where 𝑤0,𝑤1, … , 𝑤𝑑 are the entries of the vector 𝑤⃗.



Example gradient calculation
Example: Suppose 𝑓( ⃗𝑥) = 𝑎⃗ ⋅ ⃗𝑥, where 𝑎⃗ and ⃗𝑥 are vectors in ℝ𝑛.
What is 𝑑𝑑 ⃗𝑥 𝑓( ⃗𝑥)?



Goal▶ We want to minimize the mean squared error:𝑅sq(𝑤⃗) = 1𝑛‖ ⃗𝑦 − 𝑋𝑤⃗‖2▶ Strategy:
1. Compute the gradient of 𝑅sq(𝑤⃗).
2. Set it to zero and solve for 𝑤⃗.▶ The result is called 𝑤⃗∗.▶ Let’s start by rewriting the mean squared error in a way

that will make it easier to compute its gradient.



Rewriting mean squared error𝑅sq(𝑤⃗) = 1𝑛‖ ⃗𝑦 − 𝑋𝑤⃗‖2
Discussion Question

Which of the following is equivalent to 𝑅sq(𝑤⃗) ?
a) 1𝑛 ( ⃗𝑦 − 𝑋𝑤⃗) ⋅ (𝑋𝑤⃗ − 𝑦)
b) 1𝑛√( ⃗𝑦 − 𝑋𝑤⃗) ⋅ (𝑦 − 𝑋𝑤⃗)
c) 1𝑛 ( ⃗𝑦 − 𝑋𝑤⃗)𝑇 (𝑦 − 𝑋𝑤⃗)
d) 1𝑛 ( ⃗𝑦 − 𝑋𝑤⃗)(𝑦 − 𝑋𝑤⃗)𝑇To answer, go to menti.com and enter 8482 5148.



Rewriting mean squared error𝑅sq(𝑤⃗) = 1𝑛‖ ⃗𝑦 − 𝑋𝑤⃗‖2



Rewriting mean squared error𝑅sq(𝑤⃗) =



Compute the gradient

𝑑𝑅sq𝑑𝑤⃗ = 𝑑𝑑𝑤⃗ (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗ + 𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗])= 1𝑛 [ 𝑑𝑑𝑤⃗ ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑𝑑𝑤⃗ (2𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗) + 𝑑𝑑𝑤⃗ (𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗)]



Compute the gradient

𝑑𝑅sq𝑑𝑤⃗ = 𝑑𝑑𝑤⃗ (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗ + 𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗])= 1𝑛 [ 𝑑𝑑𝑤⃗ ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑𝑑𝑤⃗ (2𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗) + 𝑑𝑑𝑤⃗ (𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗)]▶ 𝑑𝑑𝑤⃗ ( ⃗𝑦 ⋅ ⃗𝑦) = 0.▶ Why? ⃗𝑦 is a constant with respect to 𝑤⃗.▶ 𝑑𝑑𝑤⃗ (2⃗𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗) = 2𝑋𝑇𝑦.▶ Why? We already showed 𝑑𝑑 ⃗𝑥 𝑎⃗ ⋅ ⃗𝑥 = 𝑎⃗.▶ 𝑑𝑑𝑤⃗ (𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗) = 2𝑋𝑇𝑋𝑤⃗.▶ Why? Will see in HW4.



Compute the gradient

𝑑𝑅sq𝑑𝑤⃗ = 𝑑𝑑𝑤⃗ (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗ + 𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗])= 1𝑛 [ 𝑑𝑑𝑤⃗ ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑𝑑𝑤⃗ (2𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗) + 𝑑𝑑𝑤⃗ (𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗)]



The normal equations▶ To minimize 𝑅sq(𝑤⃗), set its gradient to zero and solve for𝑤⃗: −2𝑋𝑇 ⃗𝑦 + 2𝑋𝑇𝑋𝑤⃗ = 0⟹ 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦▶ This is a system of equations in matrix form, called the
normal equations.▶ If 𝑋𝑇𝑋 is invertible, the solution is𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦▶ This is equivalent to the formulas for 𝑤∗0 and 𝑤∗1 we saw
before!▶ Benefit – this can be easily extended to more

complex prediction rules.



Side note — another proof

▶ We set out to minimize𝑅𝑠𝑞(𝑤⃗) = 1𝑛|| ⃗𝑦 − 𝑋𝑤⃗||2▶ We did it using multivariable calculus.▶ There’s another proof of this same fact that relies on
knowledge of linear projections. We will not cover it in
class and you are not responsible for it, but you can
watch video 13.4 here if you’re curious:
http://ds100.org/su20/lecture/lec13/.



Summary



Summary▶ We used linear algebra to rewrite the mean squared error
for the prediction rule 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 as𝑅𝑠𝑞(𝑤⃗) = 1𝑛|| ⃗𝑦 − 𝑋𝑤⃗||2▶ X is called the design matrix, 𝑤⃗ is called the

parameter vector, ⃗𝑦 is called the observation vector,
and ℎ⃗ = 𝑋𝑤⃗ is called the hypothesis vector.▶ We minimized 𝑅𝑠𝑞(𝑤⃗) using multivariable calculus and

found that the minimizing 𝑤⃗ satisfies the normal
equations, 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇𝑦.▶ Closed-form solution:𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦



What’s next?▶ The whole point of reformulating linear regression in
terms of linear algebra was so that we could generalize
our work to more sophisticated prediction rules.▶ Note that when deriving the normal equations, we

didn’t assume that there was just one feature.▶ Examples of the types of prediction rules we’ll be able to
fit soon:▶ 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2.▶ 𝐻(𝑥) = 𝑤0 + 𝑤1 cos(𝑥) + 𝑤2𝑒𝑥 .▶ 𝐻(𝑥(1), 𝑥(2)) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2).▶ e.g. Predicted Salary =𝑤0 + 𝑤1(Years of Experience) + 𝑤2(GPA).


