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Agenda

Recap of Lecture 11.
Using multiple features.
Practical demo.

Interpreting weights.



Recap of Lecture 11



Regression and linear algebra

Last time, we used linear algebra to fit a prediction rule of
the form

H(x) = w, + w, x
To do so, we first defined a design matrix X, parameter

vector W, and observation vector y as follows:

T X Yq
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We also re-wrote our prediction rule as a matrix-vector
multiplication, defining the hypothesis vector h as

h = xw



Minimizing mean squared error

With our new linear algebra formulation of regression,
our mean squared error now looks like:

- _ - - 2

To find w*, the optimal parameter vector, we took the
gradient of qu(vT/) with respect to w, set it equal to 0, and
solved.

The result is the normal equations:

XTXw* =Xy
When XTX is invertible, an equivalent form is
W* - (XTX)_1XTy

This gives the same wg and wy as our formulas from
Lecture 6.



Using multiple features



Using multiple features
How do we predict salary given multiple features?
We believe salary is a function of experience and GPA.

In other words, we believe there is a function H so that:

salary = H(years of experience, GPA)

Recall: H is a prediction rule.

Our goal: find a good prediction rule, H.



Example prediction rules

H,(experience, GPA) = $2,000 x (experience) + $40,000 x C;P(')A

H,(experience, GPA) = $60,000 x 1.05(experience«GPA)

H,(experience, GPA) = cos(experience) + sin(GPA)



Linear prediction rules
We'll restrict ourselves to linear prediction rules:
H(experience, GPA) = w, + w, (experience) + w,(GPA)
This is called multiple linear regression.

Note that H is linear in the parameters wy, w,, w,.

H is a linear combination of features (1, experience,
GPA) with ws as the coefficients (w,, w,, and w,).

As a result, we can solve the normal equations to find wg,
w3, and w3!

Linear regression with multiple features is called multiple
linear regression.



Geometric interpretation
Question: The prediction rule
H(experience) = w, + w,(experience)

looks like a line in 2D.

How many dimensions do we need to graph

H(experience, GPA) = w, + w, (experience) + w,(GPA)

What is the shape of the prediction rule?



Example dataset

For each of n people, collect each feature, plus salary:

Person # | Experience GPA | Salary

1 3 37| 85,000
2 6 33| 95000
3 10 3.1 | 105,000

We represent each person with a feature vector:

3 . [6 . [10
371" %7330 %3731




The hypothesis vector

When our prediction rule is
H(experience, GPA) = w, + w,(experience) + w,(GPA),

the hypothesis vector h € R" can be written

H(experience,, GPA,) 1 experience, GPA, W
b H(experience,, GPA,) _|1 experience, GPA, W?

H(experience_,GPA,) 1 experience, GPA, W2



How do we find w*?

To find the best parameter vector, W*, we can use the
design matrix and observation vector

1 experience, GPA, Y,
1 experience, GPA, j - Y,
Y

1 experience, GPA,

X =

and solve the normal equations

XX =Xy

Notice that the rows of the design matrix are the
(transposed) feature vectors, with an additional 1 in front.



Notation for multiple linear regression

We will need to keep track of multiple’ features for every
individual in our data set.

As before, subscripts distinguish between individuals in
our data set. We have n individuals (or training
examples).

Superscripts distinguish between features.? We have d

features.
experience = x(")
GPA = x(?)

"In practice, we might use hundreds or even thousands of features.
2Think of them as new variable names, such as new letters.



Augmented feature vectors

The augmented feature vector Aug(X) is the vector
obtained by adding a 1 to the front of feature vector X:
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Then, our prediction rule is
H(X) = wy + wy XM+ w,x@ + v w x@
W - Aug(X)



The general problem

We have n data points (or training examples):
(%,,¥4) s, (X, y,) where each %; is a feature vector of d

features:
(1
X.

1
2
N
We want to find a good linear prediction rule:

H(X) = wy + wy XM+ w,x@ + v w x@
= W - Aug(X)



The general solution

Use design matrix

d -
1 xg” xgz) xg ) Aug(x,)"
x=|1 xg) xgz) xgd) - Aug(x,)"
ces ..:I ..é ..(.j AU ";Z' T
1 xM x@ X 8(x,)

and observation vector to solve the normal equations
XTXw* = XTy

to find the optimal parameter vector.



Interpreting the parameters

With d features, w has d + 1 entries.
w, is the bias, also known as the intercept.

w,, ..., W, each give the weight, i.e. coefficient, of a
feature.
H(X) = w, + W1X(1) +o+ WdX(d)

The sign of w; tells us about the relationship between ith
feature and the output of our prediction rule.



Practical demo



Example: predicting sales

For each of 26 stores, we have:
net sales,
square feet,
inventory,
advertising expenditure,
district size, and
number of competing stores.

Goal: predict net sales given square footage, inventory,
etc.

To begin:
H(square feet, competitors) = w,+w, (square feet)+w,(competitors)



Example: predicting sales

H(square feet, competitors) = w,+w, (square feet)+w,(competitors)

Discussion Question

What will be the sign of wj and w3?
A wy=+ W =-
B) wiy=+ W=+
Qwi=- w=-
D) wi=- w;=+
To answer, go to menti.com and enter 8482 5148.



menti.com

Follow along with the demo by clicking the code link on the
course website next to Lecture 12.



Interpreting weights



Discussion Question

Which feature has the greatest effect on the outcome?

A) square feet: wj = 16.202
B) competing stores:  w; = -5.311
C) inventory: w; = 0.175

D) advertising: w; = 11.526
E) district size: w; = 13.580

To answer, go to menti.com and enter 8482 5148.



menti.com

Which features are most “important”?

The most important feature is not necessarily the feature
with largest weight.

Features are measured in different units, scales.
Suppose | fit one prediction rule, H,, with sales in
dollars, and another prediction rule, H,, with sales in
thousands of dollars.

Sales is just as important in both prediction rules.
But the weight of sales in H, will be 1000 times
smaller than the weight of sales in H,,.

Intuitive explanation: 5 x 45000 = (5 x 1000) x 45.

Solution: we should standardize each feature, i.e. convert
each feature to standard units.



Summary



Summary

The normal equations can be used to solve the multiple
linear regression problem, where we use multiple
features to predict an outcome.

We can interpret the parameters as weights. The signs of
weights give meaningful information, but we can only
compare weights if our features are standardized.



