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Agenda

▶ Recap of Lecture 11.

▶ Using multiple features.

▶ Practical demo.

▶ Interpreting weights.



Recap of Lecture 11



Regression and linear algebra
▶ Last time, we used linear algebra to fit a prediction rule of
the form

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥

▶ To do so, we first defined a design matrix 𝑋 , parameter
vector �⃗�, and observation vector ⃗𝑦 as follows:

𝑋 = [
1 𝑥1
1 𝑥2
... ...
1 𝑥𝑛

] , �⃗� = [𝑤0𝑤1
] , ⃗𝑦 = [

𝑦1
𝑦2
...
𝑦𝑛

]

▶ We also re-wrote our prediction rule as a matrix-vector
multiplication, defining the hypothesis vector ℎ⃗ as

ℎ⃗ = 𝑋�⃗�



Minimizing mean squared error
▶ With our new linear algebra formulation of regression,
our mean squared error now looks like:

𝑅𝑠𝑞(�⃗�) = || ⃗𝑦 − 𝑋�⃗�||2

▶ To find ⃗𝑤∗, the optimal parameter vector, we took the
gradient of 𝑅𝑠𝑞(�⃗�) with respect to �⃗�, set it equal to 0, and
solved.

▶ The result is the normal equations:

𝑋𝑇𝑋�⃗�∗ = 𝑋𝑇𝑦

▶ When 𝑋𝑇𝑋 is invertible, an equivalent form is

�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

▶ This gives the same 𝑤∗0 and 𝑤∗1 as our formulas from
Lecture 6.



Using multiple features



Using multiple features

▶ How do we predict salary given multiple features?

▶ We believe salary is a function of experience and GPA.

▶ In other words, we believe there is a function 𝐻 so that:

salary ≈ 𝐻(years of experience,GPA)

▶ Recall: 𝐻 is a prediction rule.

▶ Our goal: find a good prediction rule, 𝐻.



Example prediction rules

𝐻1(experience,GPA) = $2, 000 × (experience) + $40,000 ×
GPA
4.0

𝐻2(experience,GPA) = $60,000 × 1.05(experience+GPA)

𝐻3(experience,GPA) = cos(experience) + sin(GPA)



Linear prediction rules

▶ We’ll restrict ourselves to linear prediction rules:

𝐻(experience,GPA) = 𝑤0 + 𝑤1(experience) + 𝑤2(GPA)

▶ This is called multiple linear regression.

▶ Note that 𝐻 is linear in the parameters 𝑤0, 𝑤1, 𝑤2.
▶ 𝐻 is a linear combination of features (1, experience,
GPA) with 𝑤s as the coefficients (𝑤0, 𝑤1, and 𝑤2).

▶ As a result, we can solve the normal equations to find 𝑤∗0,
𝑤∗1, and 𝑤∗2!

▶ Linear regression with multiple features is called multiple
linear regression.



Geometric interpretation
Question: The prediction rule

𝐻(experience) = 𝑤0 + 𝑤1(experience)
looks like a line in 2D.

1. How many dimensions do we need to graph
𝐻(experience,GPA) = 𝑤0 + 𝑤1(experience) + 𝑤2(GPA)

2. What is the shape of the prediction rule?



Example dataset

▶ For each of 𝑛 people, collect each feature, plus salary:

Person # Experience GPA Salary
1 3 3.7 85,000
2 6 3.3 95,000
3 10 3.1 105,000

▶ We represent each person with a feature vector:

⃗𝑥1 = [
3
3.7] , ⃗𝑥2 = [

6
3.3] , ⃗𝑥3 = [

10
3.1]



The hypothesis vector

▶ When our prediction rule is

𝐻(experience,GPA) = 𝑤0 + 𝑤1(experience) + 𝑤2(GPA),

the hypothesis vector ℎ⃗ ∈ ℝ𝑛 can be written

ℎ⃗ = [
𝐻(experience1,GPA1)
𝐻(experience2,GPA2)

...
𝐻(experience𝑛,GPA𝑛)

] = [
1 experience1 GPA1
1 experience2 GPA2
... ... ...
1 experience𝑛 GPA𝑛

] [
𝑤0
𝑤1
𝑤2
]



How do we find �⃗�∗?
▶ To find the best parameter vector, �⃗�∗, we can use the
design matrix and observation vector

𝑋 = [
1 experience1 GPA1
1 experience2 GPA2
... ... ...
1 experience𝑛 GPA𝑛

] , ⃗𝑦 = [
𝑦1
𝑦2
...
𝑦𝑛

]

and solve the normal equations

𝑋𝑇𝑋�⃗�∗ = 𝑋𝑇 ⃗𝑦

▶ Notice that the rows of the design matrix are the
(transposed) feature vectors, with an additional 1 in front.



Notation for multiple linear regression

▶ We will need to keep track of multiple1 features for every
individual in our data set.

▶ As before, subscripts distinguish between individuals in
our data set. We have 𝑛 individuals (or training
examples).

▶ Superscripts distinguish between features.2 We have 𝑑
features.
▶ experience = 𝑥(1)
▶ GPA = 𝑥(2)

1In practice, we might use hundreds or even thousands of features.
2Think of them as new variable names, such as new letters.



Augmented feature vectors

▶ The augmented feature vector Aug( ⃗𝑥) is the vector
obtained by adding a 1 to the front of feature vector ⃗𝑥:

⃗𝑥 =
⎡⎢⎢⎢

⎣

𝑥(1)

𝑥(2)

..

.

𝑥(𝑑)

⎤⎥⎥⎥

⎦

Aug( ⃗𝑥) =
⎡⎢⎢⎢⎢⎢

⎣

1
𝑥(1)

𝑥(2)

..

.

𝑥(𝑑)

⎤⎥⎥⎥⎥⎥

⎦

�⃗� =
⎡⎢⎢⎢⎢⎢⎢

⎣

𝑤0
𝑤1
𝑤2
..
.

𝑤𝑑

⎤⎥⎥⎥⎥⎥⎥

⎦

▶ Then, our prediction rule is

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + … + 𝑤𝑑𝑥(𝑑)
= �⃗� ⋅ Aug( ⃗𝑥)



The general problem

▶ We have 𝑛 data points (or training examples):
( ⃗𝑥1, 𝑦1) , … , ( ⃗𝑥𝑛, 𝑦𝑛) where each ⃗𝑥𝑖 is a feature vector of 𝑑
features:

⃗𝑥𝑖 = [

𝑥(1)𝑖
𝑥(2)𝑖
…
𝑥(𝑑)𝑖

]

▶ We want to find a good linear prediction rule:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + … + 𝑤𝑑𝑥(𝑑)
= �⃗� ⋅ Aug( ⃗𝑥)



The general solution

▶ Use design matrix

𝑋 = [
1 𝑥(1)1 𝑥(2)1 … 𝑥(𝑑)1
1 𝑥(1)2 𝑥(2)2 … 𝑥(𝑑)2
... ... ... ...
1 𝑥(1)𝑛 𝑥(2)𝑛 … 𝑥(𝑑)𝑛

] = [
Aug( ⃗𝑥1)𝑇
Aug( ⃗𝑥2)𝑇

...
Aug( ⃗𝑥𝑛)𝑇

]

and observation vector to solve the normal equations

𝑋𝑇𝑋�⃗�∗ = 𝑋𝑇 ⃗𝑦

to find the optimal parameter vector.



Interpreting the parameters

▶ With 𝑑 features, �⃗� has 𝑑 + 1 entries.

▶ 𝑤0 is the bias, also known as the intercept.

▶ 𝑤1, … , 𝑤𝑑 each give the weight, i.e. coefficient, of a
feature.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + … + 𝑤𝑑𝑥(𝑑)

▶ The sign of 𝑤𝑖 tells us about the relationship between 𝑖th
feature and the output of our prediction rule.



Practical demo



Example: predicting sales

▶ For each of 26 stores, we have:
▶ net sales,
▶ square feet,
▶ inventory,
▶ advertising expenditure,
▶ district size, and
▶ number of competing stores.

▶ Goal: predict net sales given square footage, inventory,
etc.

▶ To begin:
𝐻(square feet, competitors) = 𝑤0+𝑤1(square feet)+𝑤2(competitors)



Example: predicting sales

𝐻(square feet, competitors) = 𝑤0+𝑤1(square feet)+𝑤2(competitors)

Discussion Question

What will be the sign of 𝑤∗1 and 𝑤∗2?
A) 𝑤∗1 = +, 𝑤∗2 = −
B) 𝑤∗1 = +, 𝑤∗2 = +
C) 𝑤∗1 = −, 𝑤∗2 = −
D) 𝑤∗1 = −, 𝑤∗2 = +
To answer, go to menti.com and enter 8482 5148.

menti.com


Follow along with the demo by clicking the code link on the
course website next to Lecture 12.



Interpreting weights



Discussion Question

Which feature has the greatest effect on the outcome?

A) square feet: 𝑤∗1 = 16.202
B) competing stores: 𝑤∗2 = −5.311
C) inventory: 𝑤∗2 = 0.175
D) advertising: 𝑤∗3 = 11.526
E) district size: 𝑤∗4 = 13.580

To answer, go to menti.com and enter 8482 5148.

menti.com


Which features are most “important”?

▶ The most important feature is not necessarily the feature
with largest weight.

▶ Features are measured in different units, scales.
▶ Suppose I fit one prediction rule, 𝐻1, with sales in
dollars, and another prediction rule, 𝐻2, with sales in
thousands of dollars.

▶ Sales is just as important in both prediction rules.
▶ But the weight of sales in 𝐻1 will be 1000 times
smaller than the weight of sales in 𝐻2.

▶ Intuitive explanation: 5 × 45000 = (5 × 1000) × 45.

▶ Solution: we should standardize each feature, i.e. convert
each feature to standard units.



Summary



Summary

▶ The normal equations can be used to solve the multiple
linear regression problem, where we use multiple
features to predict an outcome.

▶ We can interpret the parameters as weights. The signs of
weights give meaningful information, but we can only
compare weights if our features are standardized.


