Lecture 12 – Multiple Linear Regression and Feature Engineering

DSC 40A, Fall 2022 @ UC San Diego
Mahdi Soleymani, with help from many others

Agenda

- Recap of Lecture 11.
- Using multiple features.
- Practical demo.
- Interpreting weights.

Wed OH 5-GPM SDSC 2nd Hoor

Recap of Lecture 11

Regression and linear algebra

Last time, we used linear algebra to fit a prediction rule of the form

$$H(x) = w_0 + w_1 x$$

To do so, we first defined a design matrix X, parameter where \vec{v} and observation vector \vec{v} as follows: $X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ ... & ... \\ 1 & x \end{bmatrix}, \quad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}, \quad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ ... \\ v \end{bmatrix}$

$$X = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \dots & \dots \\ 1 & X_n \end{bmatrix},$$

$$\vec{v} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}, \qquad \vec{y}$$

$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

We also re-wrote our prediction rule as a matrix-vector multiplication, defining the hypothesis vector \vec{h} as

$$X = E \mid X \mid$$

$$\vec{h} = X\vec{w}$$

Minimizing mean squared error

► With our new linear algebra formulation of regression, our mean squared error now looks like:

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

- To find \vec{w}^* , the optimal parameter vector, we took the gradient of $R_{sq}(\vec{w})$ with respect to \vec{w} , set it equal to 0, and solved.
- ► The result is the **normal equations**:

mal equations:

$$X^T X \vec{w}^* = X^T \vec{y}$$

 \triangleright When X^TX is invertible, an equivalent form is

$$\vec{W}^* = (X^T X)^{-1} X^T \vec{y}$$

This gives the same w_0^* and w_1^* as our formulas from Lecture 9.

Using multiple features

Using multiple features

- How do we predict salary given multiple features?
- We believe salary is a function of experience and GPA.
- ▶ In other words, we believe there is a function *H* so that:

salary \approx H(years of experience, GPA)

- Recall: H is a prediction rule.
- Our goal: find a good prediction rule, H.

Example prediction rules

$$H_1$$
(experience, GPA) = \$2,000 × (experience) + \$40,000 × $\frac{\text{GPA}}{4.0}$

$$H_2$$
(experience, GPA) = \$60,000 × 1.05^(experience+GPA)

$$H_3$$
(experience, GPA) = cos(experience) + sin(GPA)

Linear prediction rules

$$W_0 + W_1 X_1^{(1)} + W_2 X_2 + \cdots$$

Page = 42

X=1:3

H(experience, GPA) =
$$w_0 + w_1$$
(experience) + w_2 (GPA)

 $f(\alpha) = X + 2$

This is called multiple linear regression.

 $\times = 2$: 4 Note that H is linear in the parameters w_0, w_1, w_2 . $f_{(1+2)} = H$ is a linear combination of features (1, experience, $3+2=5\neq 7$ GPA) with ws as the coefficients $(w_0, w_1, \text{ and } w_2)$.

As a result, we can solve the **normal equations** to find
$$w_0^*$$
, w_1^* , and w_2^* !

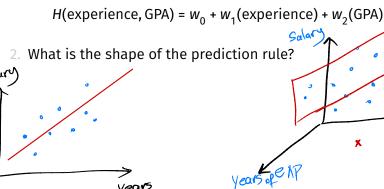
Linear regression with multiple features is called multiple linear regression. Y x, B: \$ (xx+ Bx2)=xytB3

Geometric interpretation

Question: The prediction rule

$$H(\text{experience}) = w_0 + w_1(\text{experience})$$

looks like a line in 2D.



50/01%

Example dataset

For each of *n* people, collect each feature, plus salary:

Person #	Experience	GPA	Salary
1	3	3.7	85,000
2	6	3.3	95,000
3	10	3.1	105,000

We represent each person with a feature vector:

$$\vec{x}_1 = \begin{bmatrix} 3 \\ 3.7 \end{bmatrix}$$
, $\vec{x}_2 = \begin{bmatrix} 6 \\ 3.3 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 10 \\ 3.1 \end{bmatrix}$

The hypothesis vector

When our prediction rule is

$$H(\text{experience}, \text{GPA}) = w_0 + w_1(\text{experience}) + w_2(\text{GPA}),$$

the hypothesis vector $\vec{h} \in \mathbb{R}^n$ can be written

How do we find \vec{w}^* ?

To find the best parameter vector, \vec{w}^* , we can use the design matrix and observation vector

That rix and observation vector
$$X = \begin{bmatrix} 1 & \text{experience}_1 & \text{GPA}_1 \\ 1 & \text{experience}_2 & \text{GPA}_2 \\ \dots & \dots & \dots \\ 1 & \text{experience}_n & \text{GPA}_n \end{bmatrix}, \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

and solve the normal equations

$$X^T X \vec{w}^* = X^T \vec{y}$$

Notice that the rows of the design matrix are the (transposed) feature vectors, with an additional 1 in front.

Notation for multiple linear regression

- We will need to keep track of multiple¹ features for every individual in our data set.
- As before, subscripts distinguish between individuals in our data set. We have *n* individuals (or training examples).
- Superscripts distinguish between features.² We have d features.

► experience =
$$x^{(1)}$$

► GPA = $x^{(2)}$

(2)

 X_1
 X_2

¹In practice, we might use hundreds or even thousands of features.

²Think of them as new variable names, such as new letters.

Augmented feature vectors

The augmented feature vector $Aug(\vec{x})$ is the vector obtained by adding a 1 to the front of feature vector \vec{x} :

$$\vec{x} = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(d)} \end{bmatrix} \quad \text{Aug}(\vec{x}) = \begin{bmatrix} 1 \\ x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(d)} \end{bmatrix} \quad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

Then, our prediction rule is

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + ... + w_d x^{(d)} = \mathbf{W_0} + \mathbf{\tilde{W}_{\bullet}} \times \mathbf{X}$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

The general problem

We have n data points (or training examples): $(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$ where each \vec{x}_i is a feature vector of d features:

$$\vec{X}_i = \begin{bmatrix} x_i^{(1)} \\ X_i^{(2)} \\ X_i^{(d)} \\ \dots \\ X_i^{(d)} \end{bmatrix}$$

We want to find a good linear prediction rule:

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \dots + w_d x^{(d)}$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

The general solution

Use design matrix

$$\begin{array}{ccc}
X &= & \\
1)^{T} & \text{Aug}(\overline{X}) &= & \\
\end{array}$$

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(d)} \\ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(d)} \\ \dots & \dots & \dots & \dots \\ 1 & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(d)} \end{bmatrix} = \begin{bmatrix} \operatorname{Aug}(\vec{x_1})^T \\ \operatorname{Aug}(\vec{x_2})^T \\ \dots \\ \operatorname{Aug}(\vec{x_n})^T \end{bmatrix} \xrightarrow{\operatorname{Aug}(\vec{x})}$$

and observation vector to solve the normal equations

$$X^T X \vec{w}^* = X^T \vec{y}$$

to find the optimal parameter vector.

Interpreting the parameters

- With d features, \vec{w} has d + 1 entries.
- \triangleright w_0 is the bias, also known as the intercept.
- w₁,..., w_d each give the weight, i.e. coefficient, of a feature.

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + \dots + w_d x^{(d)}$$

The sign of w_i tells us about the relationship between *i*th feature and the output of our prediction rule.

Practical demo

Example: predicting sales

- For each of 26 stores, we have:
 - net sales,
 - square feet,
 - inventory,
 - advertising expenditure,
 - district size, and
 - number of competing stores.
- ► Goal: predict net sales given square footage, inventory, etc.
- ► To begin:

 $H(\text{square feet, competitors}) = w_0 + w_1(\text{square feet}) + w_2(\text{competitors})$

Example: predicting sales

 $H(\text{square feet, competitors}) = w_0 + w_1(\text{square feet}) + w_2(\text{competitors})$

Discussion Question

What will be the sign of w_1^* and w_2^* ?

- A) $W_1^* = +$, $W_2^* = -$ B) $W_1^* = +$, $W_2^* = +$ C) $W_1^* = -$, $W_2^* = -$ D) $W_1^* = -$, $W_2^* = +$ To answer, go to menti.com and enter 8482 5148.

Follow along with the demo by clicking the code link on the
course website next to Lecture 12.

Interpreting weights

Discussion Question

Which feature has the greatest effect on the outcome?

A) square feet:
$$w_1^* = 16.202$$

B) competing stores: $w_2^* = -5.311$ C) inventory: $w_2^* = 0.175$

D) advertising:
$$w_{4}^{*} = 11.526$$

E) district size: $w_{\epsilon}^{4} = 13.580$

To answer, go to menti.com and enter 8482 5148.

Which features are most "important"?

- with largest weight. # $\#(x) = W_0 + W_0 \times + W_0 \times$
 - Suppose I fit one prediction rule, H_1 , with sales in dollars, and another prediction rule, H_2 , with sales in thousands of dollars.

K\$

- Sales is just as important in both prediction rules.
- But the weight of sales in H_1 will be 1000 times smaller than the weight of sales in H_2 .
- Intuitive explanation: $5 \times 45000 = (5 \times 1000) \times 45$.
- ► **Solution**: we should **standardize** each feature, i.e. convert each feature to standard units.

Summary

Summary

- The normal equations can be used to solve the multiple linear regression problem, where we use multiple features to predict an outcome.
- We can interpret the parameters as weights. The signs of weights give meaningful information, but we can only compare weights if our features are standardized.