Lecture 12 - Multiple Linear Regression and Feature Engineering

DSC 40A, Fall 2022 @ UC San Diego
Mahdi Soleymani, with help from many others

Agenda

wed OH 5-GPM

- Recap of Lecture 11.
- Using multiple features.

$$
\begin{array}{r}
\text { SDSC } 2 n d \\
\text { floor }
\end{array}
$$

- Practical demo.
- Interpreting weights.

Recap of Lecture 11

Regression and linear algebra

- Last time, we used linear algebra to fit a prediction rule of the form

$$
H(x)=w_{0}+w_{1} x
$$

- To do so, we first defined a design matrix X, parameter unseen vector \vec{w}, and observation vector \vec{y} as follows:
$\left[\begin{array}{cc}1 & x_{1}^{\prime} \\ 1 & x_{2}^{\prime}\end{array}\right] \quad X=\left[\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ \ldots & \ldots \\ 1 & x_{n}\end{array}\right], \quad \vec{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right], \quad \vec{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \ldots \\ y_{n}\end{array}\right]$
$\uparrow>$ We also re-wrote our prediction rule as a matrix-vector multiplication, defining the hypothesis vector \vec{h} as

$$
x=\left[\begin{array}{ll}
1 & x
\end{array}\right] \quad \vec{h}=x \vec{w} \quad \text { prediction on } \begin{aligned}
& \text { dutaset }
\end{aligned}
$$

Minimizing mean squared error

- With our new linear algebra formulation of regression, our mean squared error now looks like:

$$
R_{s q}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- To find \vec{w}^{*}, the optimal parameter vector, we took the gradient of $R_{\text {sq }}(\vec{w})$ with respect to \vec{w}, set it equal to 0 , and solved.
- The result is the normal equations:

$$
\underset{A}{X^{\top} X} \vec{w}^{*}=X^{X^{\top} \vec{y}} \underset{b}{\vec{b}}
$$

- When $X^{\top} X$ is invertible, an equivalent form is

$$
\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

- This gives the same w_{0}^{*} and w_{1}^{*} as our formulas from Lecture 9.

Using multiple features

Using multiple features

- How do we predict salary given multiple features?
- We believe salary is a function of experience and GPA.
- In other words, we believe there is a function H so that:

$$
\text { salary } \approx H \text { (years of experience, GPA) }
$$

- Recall: H is a prediction rule.
- Our goal: find a good prediction rule, H.

Example prediction rules

$$
\begin{aligned}
& H_{1}(\text { experience, GPA })=\$ 2,000 \times(\text { experience })+\$ 40,000 \times \frac{G P A}{4.0} \\
& H_{2}(\text { experience, GPA })=\$ 60,000 \times 1.05^{(\text {experience }+G P A)} \\
& H_{3}(\text { experience, GPA })=\cos (\text { experience })+\sin (G P A)
\end{aligned}
$$

Linear prediction rules

$$
w_{0}+w_{1} x_{1}^{(1)}+w_{2} x_{2}^{(2)}+\cdots
$$

We'll restrict ourselves to linear prediction rules: $W_{0}+W_{1} D$

$$
f(x)=x+2^{H(\epsilon}
$$

$$
H(\text { experience, GPA })=w_{0}+w_{1}(\text { experience })+w_{2}(G P A)
$$

This is called multiple linear regression.

$$
x=1: 3
$$

$$
\begin{aligned}
& f\left(x_{1}\right)=y_{1} \\
& f\left(x_{2}\right)=y_{2}
\end{aligned}
$$

$x=2: 4>$ Note that H linear in the parameters w_{0}, w_{1}, w_{2}.
$f(1+2)=\quad H$ is a linear combination of features (1 , experience, $3+2=5 \neq 7 \mathrm{GPA}$) with $w s$ as the coefficients (w_{0}, w_{1}, and w_{2}).

As a result, we can solve the normal equations to find w_{0}^{*}, w_{1}^{*}, and $w_{2}^{*}!$

Linear regression with multiple features is called multiple linear regression.

$$
\forall \alpha, \beta=f\left(\alpha x_{1}+\beta x_{2}\right)=\alpha y_{1}+\beta y_{2}
$$

Geometric interpretation

Question: The prediction rule

$$
H(\text { experience })=w_{0}+w_{1} \text { (experience) }
$$

looks like a line in 2 D .

> Solar, rience)

1. How many dimensions do we need to graph

$$
H(\text { experience, GPA })=w_{0}+w_{1}(\text { experience })+w_{2}(G P A)
$$

2. What is the shape of the prediction rule?

Example dataset

- For each of n people, collect each feature, plus salary:

Person \#	Experience	GPA	Salary
1	3	3.7	85,000
2	6	3.3	95,000
3	10	3.1	105,000

- We represent each person with a feature vector:

$$
\vec{x}_{1}=\left[\begin{array}{c}
3 \\
3.7
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{c}
6 \\
3.3
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{c}
10 \\
3.1
\end{array}\right]
$$

The hypothesis vector
When our prediction rule is

$$
H(\text { experience, GPA })=w_{0}+w_{1}(\text { experience })+w_{2}(G P A),
$$

the hypothesis vector $\vec{h} \in \mathbb{R}^{n}$ can be written

$$
\begin{aligned}
& \vec{h})=\left[\begin{array}{c}
H\left(\text { experience }_{1}, G P A_{1}\right) \\
H\left(\text { experience }_{2}, G P A_{2}\right) \\
\ldots\left(\text { experience }_{n}, G P A_{n}\right)
\end{array}\right]=\left[\begin{array}{ccc}
1 & \text { experience }_{1} & \mathrm{GPA}_{1} \\
1 & \text { experience }_{2} & \mathrm{GPA}_{2} \\
\ldots & \ldots & \ldots \\
1 & \text { experience }_{n} & \mathrm{GPA}_{n}
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & x_{1} & G_{1} \\
\vdots & x_{2} & G_{2} \\
1 & \vdots & \text { Design matrix }
\end{array}\right]}
\end{aligned}
$$

How do we find \vec{w}^{*} ?

- To find the best parameter vector, \vec{w}^{*}, we can use the design matrix and observation vector

$$
X=\left[\right], \vec{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right]
$$

and solve the normal equations

$$
X^{\top} X \vec{w}^{*}=X^{\top} \vec{y}
$$

- Notice that the rows of the design matrix are the (transposed) feature vectors, with an additional 1 in front.

Notation for multiple linear regression

\Rightarrow We will need to keep track of multiple ${ }^{1}$ features for every individual in our data set.

- As before, subscripts distinguish between individuals in our data set. We have n individuals (or training examples).
\Rightarrow Superscripts distinguish between features. ${ }^{2}$ We have d features.
\Rightarrow experience $=x^{(1)}$
- GPA $=x^{(2)}$
$x_{1}^{(1)} x_{1}^{(2)} x_{1}^{2}$

[^0]
Augmented feature vectors

- The augmented feature vector $\operatorname{Aug}(\vec{x})$ is the vector obtained by adding a 1 to the front of feature vector \vec{x} :

$$
\Leftrightarrow d-\operatorname{dim} \longrightarrow d_{+1}-\operatorname{dim}
$$

- Then, our prediction rule is

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots+w_{d} x^{(d)}=w_{0}+\vec{w} \cdot \vec{x} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x})
\end{aligned}
$$

The general problem

- We have n data points (or training examples): $\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)$ where each \vec{x}_{i} is a feature vector of d features:

$$
\vec{x}_{i}=\left[\begin{array}{c}
x_{i}^{(1)} \\
x_{i}^{(2)} \\
\ldots \\
x_{i}^{(d)}
\end{array}\right]
$$

- We want to find a good linear prediction rule:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots+w_{d} x^{(d)} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x})
\end{aligned}
$$

The general solution

- Use design matrix
and observation vector to solve the normal equations

$$
X^{\top} X \vec{w}^{\star}=X^{\top} \vec{y}
$$

to find the optimal parameter vector.

Interpreting the parameters

- With d features, \vec{w} has $d+1$ entries.
w_{0} is the bias, also known as the intercept.
${ }^{>} w_{1}, \ldots, w_{d}$ each give the weight, i.e. coefficient, of a feature.

$$
H(\vec{x})=w_{0}+w_{1} x^{(1)}+\ldots+w_{d} x^{(d)}
$$

- The sign of w_{i} tells us about the relationship between ith feature and the output of our prediction rule.

Practical demo

Example: predicting sales

- For each of 26 stores, we have:
- net sales,
- square feet,
- inventory,
- advertising expenditure,
- district size, and
- number of competing stores.
- Goal: predict net sales given square footage, inventory, etc.
- To begin:
H (square feet, competitors) $=w_{0}+w_{1}$ (square feet) $+w_{2}$ (competitors)

Example: predicting sales

H (square feet, competitors) $=w_{0}+w_{1}$ (square feet) $+w_{2}$ (competitors)

Discussion Question

What will be the sign of w_{1}^{*} and w_{2}^{*} ?
A) $w_{1}^{*}=+, \quad w_{2}^{*}=-$
B) $w_{1}^{*}=+, \quad w_{2}^{*}=+$
C) $w_{1}^{*}=-, \quad w_{2}^{*}=-$
D) $w_{1}^{*}=-, \quad w_{2}^{*}=+$

To answer, go to menti . com and enter 84825148.

Follow along with the demo by clicking the code link on the course website next to Lecture 12.

Interpreting weights

Discussion Question

Which feature has the greatest effect on the outcome?
A) square feet: $\quad w_{1}^{*}=16.202$
B) competing stores: $\quad w_{2}^{*}=-5.311$
C) inventory:
$w_{3}^{*}=0.175$
D) advertising:
$w_{4}^{*}=11.526$
E) district size:
$w_{5}^{*}=13.580$
To answer, go to menti . com and enter 84825148.

Which features are most "important"?

- The most important feature is not necessarily the feature with largest weight.

$$
H(x)=w_{0}+w_{1} x+w_{2} z_{y}
$$

- Features are measured in different units, scales.
- Suppose I fit one prediction rule, H_{1}, with sales in dollars, and another prediction rule, H_{2}, with sales in thousands of dollars.
- Sales is just as important in both prediction rules.
- But the weight of sales in H_{1} will be 1000 times smaller than the weight of sales in H_{2}. $\mathrm{K} \$$
- Intuitive explanation: $5 \times 45000=(5 \times 1000) \times 45$.
- Solution: we should standardize each feature, i.e. convert each feature to standard units.

Summary

Summary

- The normal equations can be used to solve the multiple linear regression problem, where we use multiple features to predict an outcome.
- We can interpret the parameters as weights. The signs of weights give meaningful information, but we can only compare weights if our features are standardized.

[^0]: ${ }^{1}$ In practice, we might use hundreds or even thousands of features.
 ${ }^{2}$ Think of them as new variable names, such as new letters.

