Lecture 13 - Feature Engineering

DSC 40A, Fall 2022 @ UC San Diego
Mahdi Soleymani, with help from many others

Announcements

- Midterm on Oct 28.
- Groupwork 4 due Monday Oct. 31, at 11:59pm.
- Homework 4 due Friday Nov. 4 at 2:00pm.
- Office hours: Wednesdays 5-6, SDSC, first floor room 152E.
- Zoom link: https://umich.zoom.us/j/93336146754.
- Password=123456.
- Review secession: Monday (Discussion) and Wednesday (Lecture).

Agenda

- Interpreting weights.
- Feature engineering.

Taxonomy of machine learning.

Which features are most "important"?

- The most important feature is not necessarily the feature with largest weight.
- Features are measured in different units, scales.
- Suppose I fit one prediction rule, H_{1}, with sales in dollars, and another prediction rule, H_{2}, with sales in thousands of dollars.
\Rightarrow Sales is just as important in both prediction rules.
- But the weight of sales in H_{1} will be 1000 times smaller than the weight of sales in H_{2}.
- Intuitive explanation: $5 \times 45000=(5 \times 1000) \times 45$.
- Solution: we should standardize each feature, i.e. convert each feature to standard units.

Standard units

\Rightarrow Recall: to convert a feature $x_{1}, x_{2}, \ldots, x_{n}$ to standard units, we use the formula

$$
\overbrace{i} \text { in standard units }=\frac{x_{i}-\bar{x}}{\sigma_{x}}
$$

Example: 1, 7, 7, 9

- Mean: 6
- Standard deviation; 1-6

$$
\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

$$
\sqrt{\frac{1}{4}\left((-5)^{2}+(1)^{2}+(1)^{2}+(3)^{2}\right)}=3
$$

$\frac{\#}{\#}=\frac{\text { no wit }}{\frac{1-6}{3}}=-\frac{5}{3}, \quad \frac{7-6}{3}=\frac{1}{3}, \quad \frac{7-6}{3}=\frac{1}{3}, \quad \frac{9-6}{3}=1$

Standard units for multiple linear regression

- The result of standardizing each feature (separately!) is that the units of each feature are on the same scale.
- There's no need to standardize the outcome (net sales), since it's not being compared to anything.
- Then, solve the normal equations. The resulting $w_{0}^{*}, w_{1}^{*}, \ldots, w_{d}^{*}$ are called the standardized regression coefficients.
- Standardized regression coefficients can be directly compared to one another.

Let's jump back to our demo notebook.

Feature engineering

MPG vs. Horsepower

Question: Would a linear prediction rule work well on this dataset?

A quadratic prediction rule

- It looks like there's some sort of quadratic relationship between horsepower and mpg in the last scatter plot. We want to try and fit a prediction rule of the form

$$
H(x)=w_{0}+w_{1} x+w_{2} x^{2} \rightarrow z
$$

\Rightarrow Note that this still a linear model, because it is linear in the parameters!

- We can do that, by choosing our two "features" to be x_{i} and x_{i}^{2}, respectively.
\Rightarrow In other words, $x_{i}^{(1)}=$ horsepower $_{i}$ and $x_{i}^{(2)}=$ horsepower $_{i}^{2}$.
- More generally, we can create new features out of existing features.

A quadratic prediction rule

- Desired prediction rule: $H(x)=w_{0}+w_{1} x+w_{2} x^{2}$.
- The resulting design matrix looks like this:

$$
\text { Design } x=\left[\begin{array}{c}
1 \\
1 \\
1 \\
\cdots \\
1
\end{array}\right)\left(\begin{array}{cc}
x_{1} & x_{1}^{2} \\
x_{2} & x_{2}^{2} \\
x_{n}
\end{array} x_{n}^{2}\right]_{\square}
$$

- To find optimal parameter vector \vec{w}^{*} : solve the normal equations!

$$
x^{\top} X w^{*}=X^{\top} y
$$

More examples

- What if we want to use a prediction rule of the form

$$
\left.\begin{array}{c}
H(x)=w_{0}+w_{1} x+w_{2}\left[x^{2}+w_{3} x^{3} ?\right. \\
X=\left[\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{1}^{3} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3}
\end{array}\right] \quad w=\left[\begin{array}{ccc}
1 & x_{1} & y_{1} \\
w_{1} \\
1 & w_{2} \\
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]
\end{array}\right]\left[\begin{array}{ccc}
z_{2} \\
1 & i &
\end{array}\right]
$$

- What if we want to use a prediction rule of the form

$$
\rightarrow H(x)=w_{\lambda} \frac{1}{x^{2}}+w_{2} \sin x+w_{3} e^{x} ?
$$

$$
X=\left[\begin{array}{ccc}
\frac{1}{x_{1}^{2}} & \sin x_{1} & e^{x_{1}} \\
\frac{1}{x_{2}} & \sin x_{2} & e^{x_{2}} \\
! & \vdots & i
\end{array}\right] \quad W=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]
$$

Feature engineering

- More generally, we can create new features out of existing information in our dataset. This process is called feature engineering.
- In this class, feature engineering will mostly be restricted to creating non-linear functions of existing features (as in the previous example).
- In the future you'll learn how to do other things, like encode categorical information.

The general problem

- We have n data points (or training examples): $\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)$ where each \vec{x}_{i} is a feature vector of d features:

$$
\vec{x}_{i}=\left[\begin{array}{c}
x_{i}^{(1)} \\
x_{i}^{(2)} \\
\cdots \\
x_{i}^{(d)}
\end{array}\right]
$$

- We want to find a good linear prediction rule:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots+w_{d} x^{(d)} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x})
\end{aligned}
$$

The general solution

- Use design matrix

$$
X=\left[\begin{array}{ccccc}
1 & x_{1}^{(1)} & x_{1}^{(2)} & \ldots & x_{1}^{(d)} \\
\hline 1 & x_{2}^{(1)} & x_{2}^{(2)} & \ldots & x_{2}^{(d)} \\
\ldots & \ldots & \ldots & & \ldots \\
1 & x_{n}^{(1)} & x_{n}^{(2)} & \ldots & x_{n}^{(d)}
\end{array}\right]=\left[\begin{array}{c}
\left.\begin{array}{c}
\operatorname{Aug}\left(\overrightarrow{x_{1}}\right)^{T} \\
\operatorname{Aug}\left(\overrightarrow{x_{2}}\right)^{T} \\
\ldots \\
\operatorname{Aug}\left(\overrightarrow{x_{n}}\right)^{T}
\end{array}\right]
\end{array}\right.
$$

and observation vector to solve the normal equations

$$
X^{\top} X \vec{w}^{*}=X^{\top} \vec{y}
$$

$$
\vec{w}^{*}
$$

to find the optimal parameter vector \vec{w}^{*}.

- Feature engineering: creating new features out of existing features in order to better fit the data.

Non-linear functions of multiple features

- Recall our example from last lecture of predicting sales from square footage and number of competitors. What if we want a prediction rule of the form

$$
H(\text { sqft, comp })=w_{0}+w_{1} s q f t+w_{2} s q \mathrm{st}^{2}
$$

- Make design matrix:

$$
X=\left[\begin{array}{ccccc}
1 & s_{1} & s_{1}^{2} & c_{1} & s_{1} c_{1} \\
1 & s_{2} & s_{2}^{2} & c_{2} & s_{2} c_{2} \\
\ldots & \ldots & \ldots & \ldots & \\
1 & s_{n} & s_{n}^{2} & c_{n} & s_{n} c_{n}
\end{array}\right]
$$

Where s_{i}, and c_{i} are square footage and number of competitors for store i, respectively.

Finding the optimal parameter vector, \vec{w}^{*}

\Rightarrow As long as the form of the prediction rule permits us to write $\vec{h}=X \vec{w}$ for some X and \vec{w}, the mean squared error is

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- Regardless of the values of X and \vec{w},

$$
\begin{aligned}
& \frac{d R_{\mathrm{sq}}}{d \vec{w}}=0 \\
\Longrightarrow & -2 X^{\top} \vec{y}+2 X^{\top} X \vec{w}=0 \\
\Longrightarrow & X^{\top} X \vec{w}^{*}=X^{\top} \vec{y} .
\end{aligned}
$$

- The normal equations still hold true!
- We can fit rules like:

$$
w_{0}+w_{1} x+w_{2} x^{2} \quad w_{1} e^{-x^{(1)^{2}}}+w_{2} \cos \left(x^{(2)}+\pi\right)+w_{3} \frac{\log 2 x^{(3)}}{x^{(2)}}
$$

- This includes arbitrary polynomials.

$$
w=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]
$$

- We can have any number of parameters, as long as our prediction rule is linear in the parameters.

Determining function form

- How do we know what form our prediction rule should take?
- Sometimes, we know from theory, using knowledge about what the variables represent and how they should be related.
- Other times, we make a guess based on the data.
- Generally, start with simpler functions first.
- Remember, the goal is to find a prediction rule that will generalize well to unseen data.
- See Homework 4, Question 2D and 2E.

Discussion Question

Suppose you collect data on the height, or position, of a freefalling object at various times t_{i}. Which form should your prediction rule take to best fit the data?
A) constant, $H(t)=w_{0}$

$$
V(t)=g t+V_{0}
$$

B) linear, $H(t)=w_{0}+w_{1} t$
C) quadratic, $H(t)=w_{0}+w_{1} t+w_{2} t^{2}$

$$
A(t)=g=9.8
$$

$$
x(t)=\frac{1}{2} g t^{2}+v_{\theta} t
$$

D) no way toknow without plotting the data

To answer, go to menti . com and enter 84825148.

Example: Amdahl's Law

- Amdahl's Law relates the runtime of a program on p processors to the time to do the sequential and nonsequential parts on one processor.

$$
H(p)=t_{\mathrm{S}}+\frac{t_{\mathrm{NS}}}{p}
$$

- Collect data by timing a program with varying numbers of processors:

Example: fitting $H(x)=w_{0}+w_{1} \cdot \frac{1}{x}$

x_{i}	y_{i}
1	8
2	4
4	3

Example: Amdahl's Law

We found: $t_{\mathrm{S}}=1, t_{\mathrm{NS}}=\frac{48}{7} \approx 6.86$
Therefore our prediction rule is:

$$
\begin{aligned}
H(p) & =t_{\mathrm{S}}+\frac{t_{\mathrm{NS}}}{p} \\
& =1+\frac{6.86}{p}
\end{aligned}
$$

Transformations

How do we fit prediction rules that aren't linear in the parameters?

- Suppose we want to fit the prediction rule

$$
H(x)=w_{0} e^{w_{1} x}
$$

This is not linear in terms of w_{0} and w_{1}, so our results for linear regression don't apply.

- Possible Solution: Try to apply a transformation.

Transformations

- Question: Can we re-write $H(x)=w_{0} e^{w_{1} x}$ as a prediction rule that is linear in the parameters?

Transformations

- Solution: Create a new prediction rule, $T(x)$, with parameters b_{0} and b_{1}, where $T(x)=b_{0}+b_{1} x$.
\Rightarrow This prediction rule is related to $H(x)$ by the relationship $T(x)=\log H(x)$.
$\Rightarrow \vec{b}$ is related to \vec{w} by $b_{0}=\log w_{0}$ and $b_{1}=w_{1}$.
- Our new observation vector, \vec{z}, is $\left[\begin{array}{c}\log y_{1} \\ \log y_{2} \\ \ldots \\ \log y_{n}\end{array}\right]$.
$\Rightarrow T(x)=b_{0}+b_{1} x$ is linear in its parameters, b_{0} and b_{1}.
- Use the solution to the normal equations to find \vec{b}^{*}, and the relationship between \vec{b} and \vec{w} to find \vec{w}^{*}.

Follow along with the demo by clicking the code link on the course website next to Lecture 13.

Non-linear prediction rules in general

- Sometimes, it's just not possible to transform a prediction rule to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
- For example, with $H(x)=w_{0} e^{w_{1} x}$, we could use gradient descent or a similar method to minimize mean squared error, $R\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0} e^{w_{1} x_{i}}\right)^{2}$, and find w_{0}^{*}, w_{1}^{*} that way.
- Prediction rules that are linear in the parameters are much easier to work with.

Taxonomy of machine learning

What is machine learning?

- One definition: Machine learning is about getting a computer to find patterns in data.
- Have we been doing machine learning in this class? Yes.
- Given a dataset containing salaries, predict what my future salary is going to be.
- Given a dataset containing years of experience, GPAs, and salaries, predict what my future salary is going to be given my years of experience and GPA.

Taxonomy of Machine Learning

Supervised Learning

Reinforcement
Learning
(not covered)

Alpha Go

Unsupervised Learning

Dimensionality Reduction

Thituquicembinuolilils lis

makeamemsorg

Summary

Summary

- The process of creating new features is called feature engineering.
- As long as our prediction rule is linear in terms of its parameters $w_{0}, w_{1}, \ldots, w_{d}$, we can use the solution to the normal equations to find \vec{w}^{*}.
- Sometimes it's possible to transform a prediction rule into one that is linear in its parameters.
- Linear regression is a form of supervised machine learning, while clustering is a form of unsupervised learning.

