Lecture 13 – Feature Engineering

DSC 40A, Fall 2022 @ UC San Diego Mahdi Soleymani, with help from many others

Announcements

- Midterm on Oct 28.
- Groupwork 4 due Monday Oct. 31, at 11:59pm.
- Homework 4 due Friday Nov. 4 at 2:00pm.
- Office hours: Wednesdays 5-6, SDSC, first floor room 152E.
 Zoom link: https://umich.zoom.us/j/93336146754.
 - Password=123456.
 - Review secession: Monday (Discussion) and Wednesday (Lecture).

Agenda

- Interpreting weights.
- ► Feature engineering.
- Taxonomy of machine learning.

Which features are most "important"?

- The most important feature is not necessarily the feature with largest weight.
- ► Features are measured in different units, scales.
 - Suppose I fit one prediction rule, H₁, with sales in dollars, and another prediction rule, H₂, with sales in thousands of dollars.
 - Sales is just as important in both prediction rules.
 - But the weight of sales in H₁ will be 1000 times smaller than the weight of sales in H₂.
 - Intuitive explanation: 5 × 45000 = (5 × 1000) × 45.
- Solution: we should standardize each feature, i.e. convert each feature to standard units.

Standard units

Recall: to convert a feature x₁, x₂, ..., x_n to standard units, we use the formula

Standard units for multiple linear regression

- The result of standardizing each feature (separately!) is that the units of each feature are on the same scale.
 - There's no need to standardize the outcome (net sales), since it's not being compared to anything.
- Then, solve the normal equations. The resulting w₀^{*}, w₁^{*}, ..., w_d^{*} are called the standardized regression coefficients.
- Standardized regression coefficients can be directly compared to one another.

Let's jump back to our demo notebook.

Feature engineering

MPG vs. Horsepower

Question: Would a linear prediction rule work well on this dataset?

A quadratic prediction rule

It looks like there's some sort of quadratic relationship between horsepower and mpg in the last scatter plot. We want to try and fit a prediction rule of the form

$$H(x) = w_0 + w_1 x + w_1 x^2 - \frac{2}{3}$$

Note that this still a linear model, because it is linear in the parameters!

- We can do that, by choosing our two "features" to be x_i and x_i², respectively.
 In other words, x_i⁽¹⁾ = horsepower_i and X_i^{= [X_i]} x_i⁽²⁾ = horsepower_i².
 - More generally, we can create new features out of existing features.

To find optimal parameter vector w^{*}: solve the normal equations!

$$X^T X w^* = X^T y$$

More examples

 $X = \begin{bmatrix} 1 & X_1 & X_1^2 & X_1^3 \\ 1 & X_2 & X_2^2 & X_1^3 \\ 1 & X_1 & X_1^2 & X_1^3 \end{bmatrix} = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_2 \end{bmatrix} = \begin{bmatrix} 1 & X_1 & X_1 & X_2^2 \\ 1 & X_1 & X_1 & X_2^2 \\ 1 & X_1 & X_1 & X_1^3 \end{bmatrix}$ What if we want to use a prediction rule of the form What if we want to use a prediction rule of the form $\longrightarrow H(x) = W_1 \frac{1}{x^2} + W_2 \sin x + W_3 e^x?$ $\chi = \int \frac{\frac{1}{\chi_1^2} \quad \sin \chi_1 \quad e^{\chi_2}}{\frac{1}{\chi_2^2} \quad \sin \chi_2 \quad e^{\chi_2}}$ $W = \begin{bmatrix} W_2 \\ W_2 \end{bmatrix}$

Feature engineering

- More generally, we can create new features out of existing information in our dataset. This process is called feature engineering.
 - In this class, feature engineering will mostly be restricted to creating non-linear functions of existing features (as in the previous example).
 - In the future you'll learn how to do other things, like encode categorical information.

The general problem

We have *n* data points (or training examples): $(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$ where each \vec{x}_i is a feature vector of *d* features:

$$\vec{x}_{i} = \begin{bmatrix} x_{i}^{(1)} \\ x_{i}^{(2)} \\ \vdots \\ \vdots \\ x_{i}^{(d)} \end{bmatrix}$$

We want to find a good linear prediction rule:

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \dots + w_d x^{(d)}$$

= $\vec{w} \cdot Aug(\vec{x})$
Aug(\vec{x}_1) = $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

and observation vector to solve the normal equations

to find the optimal parameter vector \vec{w}^* .

Feature engineering: creating new features out of existing features in order to better fit the data.

Non-linear functions of multiple features

Soft :

Recall our example from last lecture of predicting sales from square footage and number of competitors. What if we want a prediction rule of the form

$$H(\operatorname{sqft}, \operatorname{comp}) = w_0 + w_1 \operatorname{sqft} + w_2 \operatorname{sqft}^2$$

$$+ w_3 \operatorname{comp} + w_4 \operatorname{sqft} \cdot \operatorname{comp}$$

$$= w_0 + w_1 s + w_2 s^2 + w_3 c + w_4 s c$$
Make design matrix:
$$W = \begin{bmatrix} 1 & s_1 & s_1^2 & c_1 & s_1 c_1 \\ 1 & s_2 & s_2^2 & c_2 & s_2 c_2 \\ \dots & \dots & \dots & \dots \\ 1 & s_n & s_n^2 & c_n & s_n c_n \end{bmatrix}$$
Where s_i and c_i are square footage and number of competitors for store *i*, respectively.

Finding the optimal parameter vector, \vec{w}^*

As long as the form of the prediction rule permits us to write $\vec{h} = X\vec{w}$ for some X and \vec{w} , the mean squared error is

$$R_{sq}(\vec{w}) = \frac{1}{n} \|\vec{y} - X\vec{w}\|^2$$

▶ Regardless of the values of X and w,

$$\frac{dR_{sq}}{d\vec{w}} = 0$$

$$\implies -2X^T\vec{y} + 2X^TX\vec{w} = 0$$

$$\implies X^TX\vec{w}^* = X^T\vec{y}.$$

The normal equations still hold true!

 We can have any number of parameters, as long as our prediction rule is linear in the parameters.

Determining function form

- How do we know what form our prediction rule should take?
- Sometimes, we know from theory, using knowledge about what the variables represent and how they should be related.
- Other times, we make a guess based on the data.
- Generally, start with simpler functions first.
 - Remember, the goal is to find a prediction rule that will generalize well to unseen data.
 - See Homework 4, Question 2D and 2E.

Discussion Question

Suppose you collect data on the height, or position, of a freefalling object at various times t_i . Which form should your prediction rule take to best fit the data?

Example: Amdahl's Law

Amdahl's Law relates the runtime of a program on p processors to the time to do the sequential and nonsequential parts on one processor.

$$H(p) = t_{\rm S} + \frac{t_{\rm NS}}{p}$$

Collect data by timing a program with varying numbers of processors:

Processors	Time (Hours)
1	8
2	4
4	3

Example: fitting $H(x) = w_0 + w_1 \cdot \frac{1}{x}$

Example: Amdahl's Law

► We found:
$$t_{\rm S}$$
 = 1, $t_{\rm NS} = \frac{48}{7} \approx 6.86$

Therefore our prediction rule is:

$$H(p) = t_{\rm S} + \frac{t_{\rm NS}}{p}$$
$$= 1 + \frac{6.86}{p}$$

Transformations

How do we fit prediction rules that aren't linear in the parameters?

Suppose we want to fit the prediction rule

 $H(x) = w_0 e^{w_1 x}$

This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.

Possible Solution: Try to apply a **transformation**.

Transformations

• **Question:** Can we re-write $H(x) = w_0 e^{w_1 x}$ as a prediction rule that **is** linear in the parameters?

Transformations

- Solution: Create a new prediction rule, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
 - ► This prediction rule is related to H(x) by the relationship $T(x) = \log H(x)$.
 - ▶ \vec{b} is related to \vec{w} by $b_0 = \log w_0$ and $b_1 = w_1$.

• Our new observation vector,
$$\vec{z}$$
, is $\begin{bmatrix} \log y_1 \\ \log y_2 \\ ... \\ \log y_n \end{bmatrix}$.

- T(x) = $b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
- ▶ Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* .

Follow along with the demo by clicking the **code** link on the course website next to Lecture 13.

Non-linear prediction rules in general

- Sometimes, it's just not possible to transform a prediction rule to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - ► For example, with $H(x) = w_0 e^{w_1 x}$, we could use gradient descent or a similar method to minimize mean squared error, $R(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i w_0 e^{w_1 x_i})^2$, and find w_0^*, w_1^* that way.
- Prediction rules that are linear in the parameters are much easier to work with.

Taxonomy of machine learning

What is machine learning?

- One definition: Machine learning is about getting a computer to find patterns in data.
- Have we been doing machine learning in this class? Yes.
 Given a dataset containing salaries, predict what my future salary is going to be.
 - Given a dataset containing years of experience, GPAs, and salaries, predict what my future salary is going to be given my years of experience and GPA.

¹taken from Joseph Gonzalez @ UC Berkeley

Summary

Summary

- The process of creating new features is called feature engineering.
- As long as our prediction rule is linear in terms of its parameters $w_0, w_1, ..., w_d$, we can use the solution to the normal equations to find \vec{w}^* .
 - Sometimes it's possible to transform a prediction rule into one that is linear in its parameters.
- Linear regression is a form of supervised machine learning, while clustering is a form of unsupervised learning.