Lecture 13 – Feature Engineering and Taxonomy of Machine Learning

DSC 40A, Fall 2022 @ UC San Diego Dr. Truong Son Hy, with help from many others

Announcements

- Look at the readings linked on the course website!
- Groupwork Relsease Day: Thursday afternoon Groupwork Submission Day: Monday midnight Homework Release Day: Friday after lecture Homework Submission Day: Friday before lecture
 - See dsc40a.com/calendar for the Office Hours schedule.

Midterm study strategy

- Review the solutions to previous homeworks and groupworks.
- Re-watch lecture, post on Campuswire, come to office hours.
- Look at the past exams at https://dsc40a.com/resources.
- Study in groups.
- Remember: it's just an exam.

Agenda

- ► Feature engineering.
- ► Taxonomy of machine learning.

Feature engineering

The general problem

We have *n* data points (or training examples): $(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$ where each \vec{x}_i is a feature vector of *d* features:

$$\vec{x}_{i} = \begin{bmatrix} x_{i}^{(1)} \\ x_{i}^{(2)} \\ \vdots \\ \vdots \\ x_{i}^{(d)} \end{bmatrix}$$

We want to find a good linear prediction rule:

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \dots + w_d x^{(d)}$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

The general solution

Use design matrix

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(d)} \\ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(d)} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(d)} \end{bmatrix} = \begin{bmatrix} \operatorname{Aug}(\vec{x}_1)^T \\ \operatorname{Aug}(\vec{x}_2)^T \\ \dots \\ \operatorname{Aug}(\vec{x}_n)^T \end{bmatrix}$$

and observation vector to solve the normal equations

$$X^T X \vec{w}^* = X^T \vec{y}$$

to find the optimal parameter vector \vec{w}^* .

Feature engineering: creating new features out of existing features in order to better fit the data.

MPG vs. Horsepower

Question: Would a linear prediction rule work well on this dataset?

A quadratic prediction rule

It looks like there's some sort of quadratic relationship between horsepower and mpg in the last scatter plot. We want to try and fit a prediction rule of the form

$$H(x) = W_0 + W_1 x + W_2 x^2$$

Note that this still a linear model, because it is linear in the parameters!

We can do that, by choosing our two "features" to be x_i and x_i², respectively.

► In other words, $x_i^{(1)} = x_i$ and $x_i^{(2)} = x_i^2$.

More generally, we can create new features out of existing features.

A quadratic prediction rule

• Desired prediction rule:
$$H(x) = w_0 + w_1 x + w_2 x^2$$
.

The resulting design matrix looks like this:

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \dots & & \\ 1 & x_n & x_n^2 \end{bmatrix}$$

To find optimal parameter vector w^{*}: solve the normal equations!

$$X^T X w^* = X^T y$$

Let's look at the demo of Lecture 12 again!

Non-linear functions of multiple features

Recall our example from last lecture of predicting sales from square footage and number of competitors. What if we want a prediction rule of the form

$$H(\text{sqft, comp}) = w_0 + w_1 \text{sqft} + w_2 \text{sqft}^2 + w_3 \text{comp} + w_4 \text{sqft} \cdot \text{comp} = w_0 + w_1 \text{s} + w_2 \text{s}^2 + w_3 \text{c} + w_4 \text{sc}$$

Make design matrix:

$$X = \begin{bmatrix} 1 & s_1 & s_1^2 & c_1 & s_1c_1 \\ 1 & s_2 & s_2^2 & c_2 & s_2c_2 \\ \dots & \dots & \dots & \dots \\ 1 & s_n & s_n^2 & c_n & s_nc_n \end{bmatrix}$$

Where s_i and c_i are square footage and number of competitors for store *i*, respectively.

Finding the optimal parameter vector, \vec{w}^*

As long as the form of the prediction rule permits us to write $\vec{h} = X\vec{w}$ for some X and \vec{w} , the mean squared error is

$$R_{\rm sq}(\vec{w}) = \frac{1}{n} \| \vec{y} - X \vec{w} \|^2$$

Regardless of the values of X and w,

$$\frac{dR_{sq}}{d\vec{w}} = 0$$

$$\implies -2X^T\vec{y} + 2X^TX\vec{w} = 0$$

$$\implies X^TX\vec{w}^* = X^T\vec{y}.$$

The normal equations still hold true!

Linear in the parameters

We can fit rules like:

$$w_0 + w_1 x + w_2 x^2$$
 $w_1 e^{-x^{(1)^2}} + w_2 \cos(x^{(2)} + \pi) + w_3 \frac{\log 2x^{(3)}}{x^{(2)}}$

- This includes arbitrary polynomials.
- We can't fit rules like:

$$w_0 + e^{w_1 x}$$
 $w_0 + \sin(w_1 x^{(1)} + w_2 x^{(2)})$

We can have any number of parameters, as long as our prediction rule is linear in the parameters.

Example

- What if we want to use a prediction rule of the form $H(x) = w_1 \frac{1}{x^2} + w_2 \sin x + w_3 e^x$?
- How does the design matrix look like?

Determining function form

- How do we know what form our prediction rule should take?
- Sometimes, we know from theory, using knowledge about what the variables represent and how they should be related.
- Other times, we make a guess based on the data.
- Generally, start with simpler functions first.
 - Remember, the goal is to find a prediction rule that will generalize well to unseen data.

Discussion Question

Suppose you collect data on the height, or position, of a freefalling object at various times t_i . Which form should your prediction rule take to best fit the data?

- A) constant, $H(t) = w_0$
- B) linear, $H(t) = w_0 + w_1 t$
- C) quadratic, $H(t) = w_0 + w_1 t + w_2 t^2$
- D) no way to know without plotting the data

Discussion Question

Suppose you collect data on the height, or position, of a freefalling object at various times t_i . Which form should your prediction rule take to best fit the data?

- A) constant, $H(t) = w_0$
- B) linear, $H(t) = w_0 + w_1 t$
- C) quadratic, $H(t) = w_0 + w_1 t + w_2 t^2$

D) no way to know without plotting the data

Answer:

- C, if we already know Newtonian physics.
- D, if we need to experiment as Galileo did.

Free fall in Newtonian physics

Without air resistance:

$$v(t) = -gt$$
$$y(t) = y_0 - \frac{1}{2}gt^2$$

where:

- v(t) is the vertical velocity with respect to time (m/s). We assume that the initial velocity is zero.
- y(t) is the altitude with respect to time (m) and y₀ is the initial altitude (m).
- ▶ g is the acceleration due to gravity (9.81 m/s² near the surface of the earth). In Newtonian physics, t is just a variable measuring the time elapsed.

Galileo's free fall experiment

Galileo's free fall experiment

Note: If we don't know the theory or we are finding the theory behind any phenomenon, first we need to create our hypothesis, then conduct experiments, collect data, and finally verify our theory given the analysis on data.

Example: Amdahl's Law

Amdahl's Law relates the runtime of a program on p processors to the time to do the sequential and nonsequential parts on one processor.

$$H(p) = t_{\rm S} + \frac{t_{\rm NS}}{p}$$

Collect data by timing a program with varying numbers of processors:

Processors	Time (Hours)
1	8
2	4
4	3

Example: fitting $H(x) = w_0 + w_1 \cdot \frac{1}{x}$

Example: Amdahl's Law

► We found:
$$t_{\rm S}$$
 = 1, $t_{\rm NS} = \frac{48}{7} \approx 6.86$

Therefore our prediction rule is:

$$H(p) = t_{\rm S} + \frac{t_{\rm NS}}{p}$$
$$= 1 + \frac{6.86}{p}$$

Transformations

How do we fit prediction rules that aren't linear in the parameters?

Suppose we want to fit the prediction rule

 $H(x) = w_0 e^{w_1 x}$

This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.

Possible Solution: Try to apply a **transformation**.

Transformations

• **Question:** Can we re-write $H(x) = w_0 e^{w_1 x}$ as a prediction rule that **is** linear in the parameters?

Transformations

- Solution: Create a new prediction rule, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
 - ► This prediction rule is related to H(x) by the relationship $T(x) = \log H(x)$.
 - ▶ \vec{b} is related to \vec{w} by $b_0 = \log w_0$ and $b_1 = w_1$.

• Our new observation vector,
$$\vec{z}$$
, is $\begin{bmatrix} \log y_1 \\ \log y_2 \\ ... \\ \log y_n \end{bmatrix}$.

- T(x) = $b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
- ▶ Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* .

Follow along with the demo by clicking the **code** link on the course website.

Non-linear prediction rules in general

- Sometimes, it's just not possible to transform a prediction rule to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - For example, with $H(x) = w_0 e^{w_1 x}$, we could use gradient descent or a similar method to minimize mean squared error, $R(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i w_0 e^{w_1 x_i})^2$, and find w_0^*, w_1^* that way.
- Prediction rules that are linear in the parameters are much easier to work with.

Taxonomy of machine learning

What is machine learning?

- One definition: Machine learning is about getting a computer to find patterns in data.
- Have we been doing machine learning in this class? Yes.
 Given a dataset containing salaries, predict what my future salary is going to be.
 - Given a dataset containing years of experience, GPAs, and salaries, predict what my future salary is going to be given my years of experience and GPA.

¹taken from Joseph Gonzalez @ UC Berkeley

