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Announcements
▶ Look at the readings linked on the course website!

▶ Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture
Homework Submission Day: Friday before lecture

▶ See dsc40a.com/calendar for the Office Hours schedule.

dsc40a.com/calendar


Midterm study strategy

▶ Review the solutions to previous homeworks and
groupworks.

▶ Re-watch lecture, post on Campuswire, come to office
hours.

▶ Look at the past exams at
https://dsc40a.com/resources.

▶ Study in groups.

▶ Remember: it’s just an exam.

https://dsc40a.com/resources


Agenda

▶ Feature engineering.

▶ Taxonomy of machine learning.



Feature engineering



The general problem

▶ We have 𝑛 data points (or training examples):
( ⃗𝑥1, 𝑦1) , … , ( ⃗𝑥𝑛, 𝑦𝑛) where each ⃗𝑥𝑖 is a feature vector of 𝑑
features:

⃗𝑥𝑖 = [

𝑥(1)𝑖
𝑥(2)𝑖
…
𝑥(𝑑)𝑖

]

▶ We want to find a good linear prediction rule:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + … + 𝑤𝑑𝑥(𝑑)
= �⃗� ⋅ Aug( ⃗𝑥)



The general solution

▶ Use design matrix

𝑋 = [
1 𝑥(1)1 𝑥(2)1 … 𝑥(𝑑)1
1 𝑥(1)2 𝑥(2)2 … 𝑥(𝑑)2
... ... ... ...
1 𝑥(1)𝑛 𝑥(2)𝑛 … 𝑥(𝑑)𝑛

] = [
Aug( ⃗𝑥1)𝑇
Aug( ⃗𝑥2)𝑇

...
Aug( ⃗𝑥𝑛)𝑇

]

and observation vector to solve the normal equations

𝑋𝑇𝑋�⃗�∗ = 𝑋𝑇 ⃗𝑦

to find the optimal parameter vector �⃗�∗.

▶ Feature engineering: creating new features out of existing
features in order to better fit the data.



Question: Would a linear prediction rule work well on this
dataset?



A quadratic prediction rule

▶ It looks like there’s some sort of quadratic relationship
between horsepower and mpg in the last scatter plot. We
want to try and fit a prediction rule of the form

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2

▶ Note that this still a linear model, because it is linear
in the parameters!

▶ We can do that, by choosing our two “features” to be 𝑥𝑖
and 𝑥2𝑖 , respectively.
▶ In other words, 𝑥(1)𝑖 = 𝑥𝑖 and 𝑥

(2)
𝑖 = 𝑥2𝑖 .

▶ More generally, we can create new features out of
existing features.



A quadratic prediction rule

▶ Desired prediction rule: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2.

▶ The resulting design matrix looks like this:

𝑋 = [
1 𝑥1 𝑥21
1 𝑥2 𝑥22
...
1 𝑥𝑛 𝑥2𝑛

]

▶ To find optimal parameter vector �⃗�∗: solve the normal
equations!

𝑋𝑇𝑋𝑤∗ = 𝑋𝑇𝑦

▶ Let’s look at the demo of Lecture 12 again!



Non-linear functions of multiple features

▶ Recall our example from last lecture of predicting sales
from square footage and number of competitors. What if
we want a prediction rule of the form

𝐻(sqft, comp) = 𝑤0 + 𝑤1sqft + 𝑤2sqft
2

+ 𝑤3comp + 𝑤4sqft ⋅ comp
= 𝑤0 + 𝑤1𝑠 + 𝑤2𝑠2 + 𝑤3𝑐 + 𝑤4𝑠𝑐

▶ Make design matrix:

𝑋 = ⎡⎢⎢

⎣

1 𝑠1 𝑠21 𝑐1 𝑠1𝑐1
1 𝑠2 𝑠22 𝑐2 𝑠2𝑐2
... ... ... ...
1 𝑠𝑛 𝑠2𝑛 𝑐𝑛 𝑠𝑛𝑐𝑛

⎤⎥⎥

⎦

Where 𝑠𝑖 and 𝑐𝑖 are
square footage and
number of competitors
for store 𝑖, respectively.



Finding the optimal parameter vector, �⃗�∗

▶ As long as the form of the prediction rule permits us to
write ℎ⃗ = 𝑋�⃗� for some 𝑋 and �⃗�, the mean squared error is

𝑅sq(�⃗�) =
1
𝑛‖ ⃗𝑦 − 𝑋�⃗�‖2

▶ Regardless of the values of 𝑋 and �⃗�,

𝑑𝑅sq
𝑑�⃗� = 0

⟹ − 2𝑋𝑇 ⃗𝑦 + 2𝑋𝑇𝑋�⃗� = 0
⟹ 𝑋𝑇𝑋�⃗�∗ = 𝑋𝑇 ⃗𝑦.

▶ The normal equations still hold true!



Linear in the parameters

▶ We can fit rules like:

𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 𝑤1𝑒−𝑥
(1)2 + 𝑤2 cos(𝑥(2) + 𝜋) + 𝑤3

log2𝑥(3)
𝑥(2)

▶ This includes arbitrary polynomials.

▶ We can’t fit rules like:

𝑤0 + 𝑒𝑤1𝑥 𝑤0 + sin(𝑤1𝑥(1) + 𝑤2𝑥(2))

▶ We can have any number of parameters, as long as our
prediction rule is linear in the parameters.



Example

▶ What if we want to use a prediction rule of the form
𝐻(𝑥) = 𝑤1

1
𝑥2 + 𝑤2 sin 𝑥 + 𝑤3𝑒𝑥?

▶ How does the design matrix look like?



Determining function form

▶ How do we know what form our prediction rule should
take?

▶ Sometimes, we know from theory, using knowledge about
what the variables represent and how they should be
related.

▶ Other times, we make a guess based on the data.

▶ Generally, start with simpler functions first.
▶ Remember, the goal is to find a prediction rule that
will generalize well to unseen data.



Discussion Question

Suppose you collect data on the height, or position, of a
freefalling object at various times 𝑡𝑖. Which form should
your prediction rule take to best fit the data?

A) constant, 𝐻(𝑡) = 𝑤0
B) linear, 𝐻(𝑡) = 𝑤0 + 𝑤1𝑡
C) quadratic, 𝐻(𝑡) = 𝑤0 + 𝑤1𝑡 + 𝑤2𝑡2
D) no way to know without plotting the data

Answer:
▶ C, if we already know Newtonian physics.

▶ D, if we need to experiment as Galileo did.
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Free fall in Newtonian physics
Without air resistance:

𝑣(𝑡) = −𝑔𝑡

𝑦(𝑡) = 𝑦0 −
1
2𝑔𝑡

2

where:
▶ 𝑣(𝑡) is the vertical velocity with respect to time (m/s). We
assume that the initial velocity is zero.

▶ 𝑦(𝑡) is the altitude with respect to time (m) and 𝑦0 is the
initial altitude (m).

▶ 𝑔 is the acceleration due to gravity (9.81 m/s2 near the
surface of the earth). In Newtonian physics, 𝑡 is just a
variable measuring the time elapsed.



Galileo’s free fall experiment

Note: If we don’t know the theory or we are finding the theory
behind any phenomenon, first we need to create our
hypothesis, then conduct experiments, collect data, and
finally verify our theory given the analysis on data.
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Example: Amdahl’s Law

▶ Amdahl’s Law relates the runtime of a program on 𝑝
processors to the time to do the sequential and
nonsequential parts on one processor.

𝐻(𝑝) = 𝑡S +
𝑡NS
𝑝

▶ Collect data by timing a program with varying numbers of
processors:

Processors Time (Hours)
1 8
2 4
4 3



Example: fitting 𝐻(𝑥) = 𝑤0 + 𝑤1 ⋅
1
𝑥

𝑥𝑖 𝑦𝑖
1 8
2 4
4 3



Example: Amdahl’s Law

▶ We found: 𝑡S = 1, 𝑡NS =
48
7 ≈ 6.86

▶ Therefore our prediction rule is:

𝐻(𝑝) = 𝑡S +
𝑡NS
𝑝

= 1 + 6.86𝑝



Transformations



How do we fit prediction rules that aren’t linear
in the parameters?

▶ Suppose we want to fit the prediction rule

𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥

This is not linear in terms of 𝑤0 and 𝑤1, so our results for
linear regression don’t apply.

▶ Possible Solution: Try to apply a transformation.



Transformations

▶ Question: Can we re-write 𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥 as a prediction
rule that is linear in the parameters?



Transformations

▶ Solution: Create a new prediction rule, 𝑇(𝑥), with
parameters 𝑏0 and 𝑏1, where 𝑇(𝑥) = 𝑏0 + 𝑏1𝑥.
▶ This prediction rule is related to 𝐻(𝑥) by the
relationship 𝑇(𝑥) = log𝐻(𝑥).

▶ �⃗� is related to �⃗� by 𝑏0 = log𝑤0 and 𝑏1 = 𝑤1.

▶ Our new observation vector, ⃗𝑧, is [
log 𝑦1
log 𝑦2
...

log 𝑦𝑛

].

▶ 𝑇(𝑥) = 𝑏0 + 𝑏1𝑥 is linear in its parameters, 𝑏0 and 𝑏1.

▶ Use the solution to the normal equations to find �⃗�∗, and
the relationship between �⃗� and �⃗� to find �⃗�∗.



Follow along with the demo by clicking the code link on the
course website.



Non-linear prediction rules in general

▶ Sometimes, it’s just not possible to transform a prediction
rule to be linear in terms of some parameters.

▶ In those cases, you’d have to resort to other methods of
finding the optimal parameters.
▶ For example, with 𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥 , we could use
gradient descent or a similar method to minimize
mean squared error, 𝑅(𝑤0, 𝑤1) =

1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − 𝑤0𝑒𝑤1𝑥𝑖)

2,
and find 𝑤∗0, 𝑤∗1 that way.

▶ Prediction rules that are linear in the parameters are
much easier to work with.



Taxonomy of machine learning



What is machine learning?

▶ One definition: Machine learning is about getting a
computer to find patterns in data.

▶ Have we been doing machine learning in this class? Yes.
▶ Given a dataset containing salaries, predict what my
future salary is going to be.

▶ Given a dataset containing years of experience, GPAs,
and salaries, predict what my future salary is going to
be given my years of experience and GPA.



1
1taken from Joseph Gonzalez @ UC Berkeley




