
Lecture 15 – Clustering

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others



Announcements
▶ Midterm this Friday!

▶ You can use a cheatsheet.



Agenda

▶ The k-Means clustering algorithm.

▶ Why does k-Means work?

▶ Practical considerations.



Question: how might we “cluster” these points
into groups?



Problem statement: clustering

Goal: Given a list of 𝑛 data points, stored as vectors in ℝ𝑑 ,
⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, and a positive integer 𝑘, place the data points into
𝑘 groups of nearby points.

▶ These groups are called “clusters”.

▶ Think about groups as colors.
▶ i.e., the goal of clustering is to assign each point a
color, such that points of the same color are close to
one another.

▶ Note, unlike with regression, there is no “right answer”
that we are trying to predict — there is no 𝑦!
▶ Clustering is an unsupervised method.



How do we define a group?

▶ One solution: pick 𝑘 cluster centers, i.e. centroids:

𝜇1, 𝜇2, ..., 𝜇𝑘

▶ These 𝑘 centroids define the 𝑘 groups.

▶ Each data point “belongs” to the group corresponding to
the nearest centroid.

▶ This reduces our problem from being “find the best group
for each data point” to being “find the best locations for
the centroids”.



How do we define a group?



How do we pick the centroids?
▶ Let’s come up with an cost function, 𝐶, which describes
how good a set of centroids is.
▶ Cost functions are a generalization of empirical risk
functions.

▶ One possible cost function:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖to its
closest centroid 𝜇𝑗

▶ This 𝐶 has a special name, inertia.

▶ Lower values of 𝐶 lead to “better” clusterings.
▶ Goal: Find the centroids 𝜇1, 𝜇2, ..., 𝜇𝑘 that minimize 𝐶.



Discussion Question

Suppose we have 𝑛 data points, ⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, each of
which are in ℝ𝑑 .
Suppose we want to cluster our dataset into 𝑘 clusters.
How many ways can I assign points to clusters?
A) 𝑑 ⋅ 𝑘
B) 𝑑𝑘
C) 𝑛𝑘
D) 𝑘𝑛
E) 𝑛 ⋅ 𝑘 ⋅ 𝑑

Answer: D



Discussion Question

Suppose we have 𝑛 data points, ⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, each of
which are in ℝ𝑑 .
Suppose we want to cluster our dataset into 𝑘 clusters.
How many ways can I assign points to clusters?
A) 𝑑 ⋅ 𝑘
B) 𝑑𝑘
C) 𝑛𝑘
D) 𝑘𝑛
E) 𝑛 ⋅ 𝑘 ⋅ 𝑑

Answer: D



How do we minimize inertia?

▶ Problem: there are exponentially many possible
clusterings. It would take too long to try them all.

▶ Another Problem: we can’t use calculus or algebra to
minimize 𝐶, since to calculate 𝐶 we need to know which
points are in which clusters.

▶ We need another solution.



k-Means Clustering, i.e. Lloyd’s Algorithm

Here’s an algorithm that attemps to minimize inertia:
1. Pick a value of 𝑘 and randomly initialize 𝑘 centroids.

2. Keep the centroids fixed, and update the groups.
▶ Assign each point to the nearest centroid.

3. Keep the groups fixed, and update the centroids.
▶ Move each centroid to the center of its group.

4. Repeat steps 2 and 3 until the centroids stop changing.



Example

See the following site for an interactive visualization of
k-Means Clustering:
https://allisonhorst.com/k-means-clustering (shared
by Suraj)

https://allisonhorst.com/k-means-clustering


An example by-hand
Suppose we choose the initial centroids 𝜇1 = [

2
1] and 𝜇2 = [

3
4].

Where will the centroids move to after one iteration of
k-Means Clustering?



Follow along with the demo by clicking the code link on the
course website next to Lecture 15.



Summary: K-Means clustering
Goal: Given a list of 𝑛 data points, stored as vectors in ℝ𝑑 ,
⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, and a positive integer 𝑘, place the data points into
𝑘 clusters of nearby points.
▶ Clusters are defined by centroids, 𝜇1, 𝜇2, ..., 𝜇𝑘. Each data
point “belongs” to the group corresponding to the nearest
centroid.

▶ We want to find the centroids that minimize inertia:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖 to its
closest centroid 𝜇𝑗

▶ k-Means Clustering is an algorithm that attempts to
minimize inertia.



Summary: Lloyd’s Algorithm

1. Pick a value of 𝑘 and randomly initialize 𝑘 centroids.

2. Keep the centroids fixed, and update the groups.
▶ Assign each point to the nearest centroid.

3. Keep the groups fixed, and update the centroids.
▶ Move each centroid to the center of its group by
averaging their coordinates.

4. Repeat steps 2 and 3 until the centroids stop changing.



Why does k-Means work?



What is the goal of k-Means Clustering?

▶ Recall, our goal is to find the centroids 𝜇1, 𝜇2, ..., 𝜇𝑘 that
minimize inertia:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖 to its
closest centroid 𝜇𝑗

▶ Let’s argue that each step of the k-Means Clustering
algorithm reduces inertia.
▶ After enough iterations, inertia will be small enough.



Why does k-Means work? (Step 1)

Let’s look at each step one at a time.
Step 1: Pick a value of 𝑘 and randomly initialize 𝑘 centroids.
▶ After initializing our 𝑘 centroids, we have an initial value
of inertia. We are going to argue that this only decreases.



Why does k-Means work? (Step 2)

Step 2: Keep the centroids fixed, and update the groups by
assigning each point to the nearest centroid.
▶ Assuming the centroids are fixed, for each ⃗𝑥𝑖 we have a
choice — which group should it be a part of?

▶ Whichever group we choose, inertia will be calculated
using the squared distance between ⃗𝑥𝑖 and that group’s
centroid.

▶ Thus, to minimize inertia, we assign each ⃗𝑥𝑖 to the group
corresponding to the closest centroid.

Note that this analysis holds every time we’re at Step 2, not
just the first time.



Why does k-Means work? (Step 3)

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).
▶ Before we justify why this is optimal, let’s re-visit inertia.



Aside: separating inertia
▶ Inertia:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖to its
closest centroid 𝜇𝑗

▶ Note that an equivalent way to write inertia is

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = 𝐶(𝜇1) + 𝐶(𝜇2) + ... + 𝐶(𝜇𝑘) where
𝐶(𝜇𝑗) = total squared distance of each

data point ⃗𝑥𝑖 in group 𝑗
to centroid 𝜇𝑗

▶ What’s the point?



Why does k-Means work? (Step 3)

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = 𝐶(𝜇1) + 𝐶(𝜇2) + ... + 𝐶(𝜇𝑘) where
𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖

in group 𝑗 to centroid 𝜇𝑗

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).
▶ Let’s argue why this minimizes 𝐶(𝜇𝑗), for each group 𝑗.



Why does k-Means work? (Step 3)

𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖
in group 𝑗 to centroid 𝜇𝑗

Suppose group 𝑗 contains the points (4, 3), (6, 4), and (8, 2).
Where should we put 𝜇𝑗 = [

𝑎
𝑏] to minimize 𝐶(𝜇𝑗)?



Cost and empirical risk

▶ On the previous slide, we saw a function of the form

𝐶(𝜇𝑗) = 𝐶(𝑎, 𝑏) = (4 − 𝑎)2 + (3 − 𝑏)2

+ (6 − 𝑎)2 + (4 − 𝑏)2

+ (8 − 𝑎)2 + (2 − 𝑏)2

▶ 𝐶(𝑎, 𝑏) can be thought of as the sum of two separate
functions, 𝑓(𝑎) and 𝑔(𝑏).
▶ 𝑓(𝑎) = (4 − 𝑎)2 + (6 − 𝑎)2 + (8 − 𝑎)2 computes the total
squared distance of each 𝑥1 coordinate to 𝑎.

▶ From earlier in the course, we know that 𝑎∗ = 4+6+8
3 = 6

minimizes 𝑓(𝑎).



Practical considerations



Initialization
▶ Depending on our initial centroids, k-Means may
“converge” to a clustering that doesn’t actually have the
lowest possible inertia.
▶ In other words, like gradient descent, k-Means can
get caught in a local minimum.

▶ Some solutions:
▶ Run k-Means several times, each with different
randomly chosen initial centroids. Keep track of the
inertia of the final result in each attempt. Choose the
attempt with the lowest inertia.

▶ k-Means++: choose one initial centroid at random,
and choose the remaining initial centroids by
maximizing distance from all other centroids.

http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf


Choosing 𝑘

▶ Note that as 𝑘 increases, inertia decreases.
▶ Intuitively, as we add more centroids, the distance
between each point and its closest centroid will drop.

▶ But the goal of clustering is to put data points into
groups, and having a large number of groups may not be
meaningful.

▶ This suggests a tradeoff between 𝑘 and inertia.



The “elbow” method
▶ Strategy: run k-Means Clustering for many choices of 𝑘
(e.g. 𝑘 = 1, 2, 3, ..., 8).

▶ Compute the value of inertia for each resulting set of
centroids.

▶ Plot a graph of inertia vs 𝑘.
▶ Choose the value of 𝑘 that appears at an “elbow”.

See the notebook for a demo.



Low inertia isn’t everything!

▶ Even if k-Means works as intended and finds the choice of
centroids that minimize inertia, the resulting clustering
may not look “right” to us humans.
▶ Recall, inertia measures the total squared distance to
centroids.

▶ This metric doesn’t always match our intuition.

▶ Let’s look at some examples at
https://tinyurl.com/40akmeans.
▶ Go to “I’ll Choose” and “Smiley Face”. Good luck!

https://tinyurl.com/40akmeans




Other clustering techniques

▶ k-Means Clustering is just one way to cluster data.

▶ There are many others, each of which work differently and
produce different kinds of results.

▶ Another common technique: agglomerative clustering.
▶ High level: start out with each point being in its own
cluster. Repeatedly combine clusters until only 𝑘 are
left.

▶ Check out this chart.

https://scikit-learn.org/stable/_images/sphx_glr_plot_cluster_comparison_001.png


Next time

▶ Friday: Midterm

▶ Monday: Review for clustering & Introduction to
Probability


