Lecture 15 - Clustering

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Announcements

Midterm this Friday!

- You can use a cheatsheet.

Agenda

> The k-Means clustering algorithm.

- Why does k-Means work?
- Practical considerations.

Question: how might we "cluster" these points into groups?

Problem statement: clustering

Goal: Given a list of n data points, stored as vectors in \mathbb{R}^{d}, $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$, and a positive integer k, place the data points into k groups of nearby points.

- These groups are called "clusters".
- Think about groups as colors.
$>$ i.e., the goal of clustering is to assign each point a color, such that points of the same color are close to one another.
- Note, unlike with regression, there is no "right answer" that we are trying to predict - there is no y !
- Clustering is an unsupervised method.

How do we define a group?

- One solution: pick k cluster centers, i.e. centroids:

$$
\mu_{1}, \mu_{2}, \ldots, \mu_{k}
$$

- These k centroids define the k groups.
- Each data point "belongs" to the group corresponding to the nearest centroid.
- This reduces our problem from being "find the best group for each data point" to being "find the best locations for the centroids".

How do we define a group?

How do we pick the centroids?

- Let's come up with an cost function, C, which describes how good a set of centroids is.
- Cost functions are a generalization of empirical risk functions.
- One possible cost function:

$$
\begin{aligned}
C\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)= & \text { total squared distance of each } \\
& \text { data point } \vec{x}_{i} \text { to its } \\
& \text { closest centroid } \mu_{j}
\end{aligned}
$$

- This C has a special name, inertia.
- Lower values of C lead to "better" clusterings.
\Rightarrow Goal: Find the centroids $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ that minimize C.

Discussion Question

Suppose we have n data points, $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$, each of which are in \mathbb{R}^{d}.
Suppose we want to cluster our dataset into k clusters. How many ways can I assign points to clusters?
A) $d \cdot k$
B) d^{k}
C) n^{k}
D) k^{n}
E) $n \cdot k \cdot d$

Discussion Question

Suppose we have n data points, $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$, each of which are in \mathbb{R}^{d}.
Suppose we want to cluster our dataset into k clusters. How many ways can I assign points to clusters?
A) $d \cdot k$
B) d^{k}
C) n^{k}
D) k^{n}
E) $n \cdot k \cdot d$

Answer: D

How do we minimize inertia?

- Problem: there are exponentially many possible clusterings. It would take too long to try them all.
- Another Problem: we can't use calculus or algebra to minimize C, since to calculate C we need to know which points are in which clusters.
- We need another solution.

k-Means Clustering, i.e. Lloyd's Algorithm

Here's an algorithm that attemps to minimize inertia:

1. Pick a value of k and randomly initialize k centroids.
2. Keep the centroids fixed, and update the groups.
$>$ Assign each point to the nearest centroid.
3. Keep the groups fixed, and update the centroids.
> Move each centroid to the center of its group.
4. Repeat steps 2 and 3 until the centroids stop changing.

Example

See the following site for an interactive visualization of k-Means Clustering: https://allisonhorst.com/k-means-clustering (shared by Suraj)

An example by-hand

Suppose we choose the initial centroids $\mu_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mu_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. Where will the centroids move to after one iteration of k -Means Clustering?

Follow along with the demo by clicking the code link on the course website next to Lecture 15.

Summary: K-Means clustering

Goal: Given a list of n data points, stored as vectors in \mathbb{R}^{d}, $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$, and a positive integer k, place the data points into k clusters of nearby points.

- Clusters are defined by centroids, $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$. Each data point "belongs" to the group corresponding to the nearest centroid.
- We want to find the centroids that minimize inertia:

$$
\begin{aligned}
C\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)= & \text { total squared distance of each } \\
& \text { data point } \vec{x}_{i} \text { to its } \\
& \text { closest centroid } \mu_{j}
\end{aligned}
$$

- k -Means Clustering is an algorithm that attempts to minimize inertia.

Summary: Lloyd's Algorithm

1. Pick a value of k and randomly initialize k centroids.
2. Keep the centroids fixed, and update the groups.
\checkmark Assign each point to the nearest centroid.
3. Keep the groups fixed, and update the centroids.

- Move each centroid to the center of its group by averaging their coordinates.

4. Repeat steps 2 and 3 until the centroids stop changing.

Why does k-Means work?

What is the goal of k-Means Clustering?

- Recall, our goal is to find the centroids $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ that minimize inertia:

$$
\begin{aligned}
C\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)= & \text { total squared distance of each } \\
& \text { data point } \vec{x}_{i} \text { to its } \\
& \text { closest centroid } \mu_{j}
\end{aligned}
$$

- Let's argue that each step of the k-Means Clustering algorithm reduces inertia.
- After enough iterations, inertia will be small enough.

Why does k-Means work? (Step 1)

Let's look at each step one at a time.
Step 1: Pick a value of k and randomly initialize k centroids.

- After initializing our k centroids, we have an initial value of inertia. We are going to argue that this only decreases.

Why does k-Means work? (Step 2)

Step 2: Keep the centroids fixed, and update the groups by assigning each point to the nearest centroid.
$>$ Assuming the centroids are fixed, for each \vec{x}_{i} we have a choice - which group should it be a part of?

- Whichever group we choose, inertia will be calculated using the squared distance between \vec{x}_{i} and that group's centroid.
- Thus, to minimize inertia, we assign each \vec{x}_{i} to the group corresponding to the closest centroid.
Note that this analysis holds every time we're at Step 2, not just the first time.

Why does k-Means work? (Step 3)

Step 3: Keep the groups fixed, and update the centroids by moving each centroid to the center of its group (by averaging coordinates).

- Before we justify why this is optimal, let's re-visit inertia.

Aside: separating inertia

- Inertia:

$$
\begin{aligned}
C\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)= & \text { total squared distance of each } \\
& \text { data point } \vec{x}_{i} \text { to its } \\
& \text { closest centroid } \mu_{j}
\end{aligned}
$$

> Note that an equivalent way to write inertia is

$$
\begin{aligned}
C\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)= & C\left(\mu_{1}\right)+C\left(\mu_{2}\right)+\ldots+C\left(\mu_{k}\right) \text { where } \\
C\left(\mu_{j}\right)= & \text { total squared distance of each } \\
& \text { data point } \vec{x}_{i} \text { in group } j \\
& \text { to centroid } \mu_{j}
\end{aligned}
$$

- What's the point?

Why does k-Means work? (Step 3)

$$
\begin{aligned}
C\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)= & C\left(\mu_{1}\right)+C\left(\mu_{2}\right)+\ldots+C\left(\mu_{k}\right) \text { where } \\
C\left(\mu_{j}\right)= & \text { total squared distance of each data point } \vec{x}_{i} \\
& \text { in group } j \text { to centroid } \mu_{j}
\end{aligned}
$$

Step 3: Keep the groups fixed, and update the centroids by moving each centroid to the center of its group (by averaging coordinates).

- Let's argue why this minimizes $C\left(\mu_{j}\right)$, for each group j.

Why does k-Means work? (Step 3)

$$
\begin{gathered}
C\left(\mu_{j}\right)=\text { total squared distance of each data point } \vec{x}_{i} \\
\text { in group } j \text { to centroid } \mu_{j}
\end{gathered}
$$

Suppose group j contains the points $(4,3),(6,4)$, and $(8,2)$. Where should we put $\mu_{j}=\left[\begin{array}{l}a \\ b\end{array}\right]$ to minimize $C\left(\mu_{j}\right)$?

Cost and empirical risk

- On the previous slide, we saw a function of the form

$$
\begin{aligned}
C\left(\mu_{j}\right)=C(a, b) & =(4-a)^{2}+(3-b)^{2} \\
& +(6-a)^{2}+(4-b)^{2} \\
& +(8-a)^{2}+(2-b)^{2}
\end{aligned}
$$

- $C(a, b)$ can be thought of as the sum of two separate functions, $f(a)$ and $g(b)$.
- $f(a)=(4-a)^{2}+(6-a)^{2}+(8-a)^{2}$ computes the total squared distance of each x_{1} coordinate to a.
- From earlier in the course, we know that $a^{*}=\frac{4+6+8}{3}=6$ minimizes $f(a)$.

Practical considerations

Initialization

- Depending on our initial centroids, k-Means may "converge" to a clustering that doesn't actually have the lowest possible inertia.
- In other words, like gradient descent, k-Means can get caught in a local minimum.
- Some solutions:
\Rightarrow Run k-Means several times, each with different randomly chosen initial centroids. Keep track of the inertia of the final result in each attempt. Choose the attempt with the lowest inertia.
- k-Means++: choose one initial centroid at random, and choose the remaining initial centroids by maximizing distance from all other centroids.

Choosing k

\Rightarrow Note that as k increases, inertia decreases.

- Intuitively, as we add more centroids, the distance between each point and its closest centroid will drop.
- But the goal of clustering is to put data points into groups, and having a large number of groups may not be meaningful.
- This suggests a tradeoff between k and inertia.

The "elbow" method

- Strategy: run k-Means Clustering for many choices of k (e.g. $k=1,2,3, \ldots, 8$).
- Compute the value of inertia for each resulting set of centroids.
$>$ Plot a graph of inertia vs k.
- Choose the value of k that appears at an "elbow".

See the notebook for a demo.

Low inertia isn't everything!

\Rightarrow Even if k-Means works as intended and finds the choice of centroids that minimize inertia, the resulting clustering may not look "right" to us humans.

- Recall, inertia measures the total squared distance to centroids.
- This metric doesn't always match our intuition.
- Let's look at some examples at https://tinyurl.com/40akmeans.
> Go to "I'll Choose" and "Smiley Face". Good luck!

Other clustering techniques

- k -Means Clustering is just one way to cluster data.
- There are many others, each of which work differently and produce different kinds of results.
- Another common technique: agglomerative clustering.
- High level: start out with each point being in its own cluster. Repeatedly combine clusters until only k are left.
- Check out this chart.

Next time

- Friday: Midterm
- Monday: Review for clustering \& Introduction to Probability

