Lecture 16 - Clustering

DSC 40A, Fall 2022 @ UC San Diego
Mahdi Soleymani, with help from many others



Announcements

Homework 4 due Friday at 11:59pm.
Remember to submit Survey 4 after finishing!

Groupwork 2 due tonight 11/1 at 11:59pm.



Agenda

k-Means Clustering algorithm.
Why does k-Means work?

Practical considerations.



k-Means Clustering



Question: how might we “cluster” these points
into groups?
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Problem statement: clustering

Goal: Given a list of n data points, stored as vectors in RY,
X4, Xy, ., X, and a positive integer k, place the data points into
k clusters of nearby points.

Clusters are defined by centroids, p, y,, ..., 4,. Each data
point “belongs” to the group corresponding to the nearest
centroid.

We want to find the centroids that minimize inertia;

C(uq, My, .y Hp,) = total squared distance of each
data point X; to its
closest centroid H;

k-Means Clustering is an algorithm that attempts to
minimize inertia.



k-Means Clustering, i.e. Lloyd’s Algorithm

Pick a value of k and randomly initialize k centroids.

Keep the centroids fixed, and update the groups.
Assign each point to the nearest centroid.

Keep the groups fixed, and update the centroids.
Move each centroid to the center of its group by

averaging their coordinates.

Repeat steps 2 and 3 until the centroids stop changing.



Example

See the following site for an interactive visualization of
k-Means Clustering: https://tinyurl.com/seakmeans


https://tinyurl.com/40akmeans

An example by-hand

Suppose we choose the initial centroids p, = [ﬂ and p, = [2]

Where will the centroids move to after one iteration of
k-Means Clustering?

x2



Follow along with the demo by clicking the code link on the
course website next to Lecture 16.



Why does k-Means work?



What is the goal of k-Means Clustering?

Recall, our goal is to find the centroids p,, i, ..., 4, that
minimize inertia:
C(uq, My, -y Hp,) = total squared distance of each
data point X; to its
closest centroid H;

Let’s argue that each step of the k-Means Clustering
algorithm reduces inertia.

After enough iterations, inertia will be small enough.



Why does k-Means work? (Step 1)

Let’s look at each step one at a time.

Step 1: Pick a value of k and randomly initialize k centroids.
After initializing our k centroids, we have an initial value
of inertia. We are going to argue that this only decreases.



Why does k-Means work? (Step 2)

Step 2: Keep the centroids fixed, and update the groups by
assigning each point to the nearest centroid.

Assuming the centroids are fixed, for each X; we have a
choice — which group should it be a part of?

Whichever group we choose, inertia will be calculated
using the squared distance between X; and that group’s
centroid.

Thus, to minimize inertia, we assign each X; to the group
corresponding to the closest centroid.

Note that this analysis holds every time we're at Step 2, not
just the first time.



Why does k-Means work? (Step 3)

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).

Before we justify why this is optimal, let’s re-visit inertia.



Aside: separating inertia
Inertia:

C(Uq, Uy - Hp,) = total squared distance of each
data point X:to its
closest centroid H;

Note that an equivalent way to write inertia is

C(Hqs Moy ey Hip) = C(U7) + C(py) + .o + C(p,,) Where
C(uj) = total squared distance of each

data point X; in group j
to centroid H;

What's the point?



Why does k-Means work? (Step 3)

C(Hqs Moy ooy Hig) = C(U7) + C(p,) + .o + C(p,) Where
C(uj) = total squared distance of each data point X;

in group j to centroid Hj

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).

Let's argue why this minimizes C(H,-), for each group j.



Why does k-Means work? (Step 3)

C(uj) = total squared distance of each data point X;
in group j to centroid Hj
Suppose group j contains the points (4, 3), (6, 4), and (8, 2).
Where should we put p; = [g] to minimize C(uj)?



Why does k-Means work? (Step 3)



Why does k-Means work? (Step 3)

C(uj) = total squared distance of each data point X;
in group j to centroid Hj
Suppose group j contains the points (4, 3), (6, 4), and (8, 2).
Where should we put p; = [g] to minimize C(uj)?



Cost and empirical risk

On the previous slide, we saw a function of the form

C;) = C(a, b) = (4 - a)* + (3 - b)®
+(6-a)? + (4 - b)?
+(8-0a)*+(2-b)

C(a, b) can be thought of as the sum of two separate
functions, f(a) and g(b).
f(a) = (4 - a)® + (6 - a)? + (8 - a)®> computes the total
squared distance of each x, coordinate to a.
From earlier in the course, we know that a* = ‘*}ﬂ =6
minimizes f(a).



Practical considerations



Initialization

Depending on our initial centroids, k-Means may
“converge” to a clustering that doesn’t actually have the
lowest possible inertia.
In other words, like gradient descent, k-Means can
get caught in a local minimum.

Some solutions:
Run k-Means several times, each with different
randomly chosen initial centroids. Keep track of the
inertia of the final result in each attempt. Choose the
attempt with the lowest inertia.

k-Means++: choose one initial centroid at random,
and choose the remaining initial centroids by
maximizing distance from all other centroids.


http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf

Choosing k

Note that as k increases, inertia decreases.
Intuitively, as we add more centroids, the distance
between each point and its closest centroid will drop.

But the goal of clustering is to put data points into
groups, and having a large number of groups may not be
meaningful.

This suggests a tradeoff between k and inertia.



The “elbow” method

Strategy: run k-Means Clustering for many choices of k
(eg. k=1,2,3,..,8).

Compute the value of inertia for each resulting set of
centroids.

Plot a graph of inertia vs k.

Choose the value of k that appears at an “elbow”.

k (number of clusters)

See the notebook for a demo.



Low inertia isn't everything!

Even if k-Means works as intended and finds the choice of
centroids that minimize inertia, the resulting clustering
may not look “right” to us humans.

Recall, inertia measures the total squared distance to
centroids.

This metric doesn’t always match our intuition.
Let’s look at some examples at

https://tinyurl.com/40akmeans.
Go to “I'll Choose” and “Smiley Face”. Good luck!


https://tinyurl.com/40akmeans




Other clustering techniques

k-Means Clustering is just one way to cluster data.

There are many others, each of which work differently and
produce different kinds of results.

Another common technique: agglomerative clustering.
High level: start out with each point being in its own
cluster. Repeatedly combine clusters until only k are
left.

Check out this chart.


https://scikit-learn.org/stable/_images/sphx_glr_plot_cluster_comparison_001.png

Summary, next time



Summary

k-Means Clustering attempts to minimize inertia.

We showed that it minimizes inertia on each step, but
it's possible that it converges to a local minimum.

Different initial centroids can lead to different
clusterings.

To choose R, the number of clusters, we can use the
elbow method.

Other clustering techniques may work better than
k-Means Clustering in certain cases.

Outcomes, sample spaces, and events are the “building
blocks” of probability.



Next time

A deep-dive on the fundamentals rules of probability.

Important: We've posted many probability resources on
the resources tab of the course website. These will no
doubt come in handy.

No more DSC 40A-specific readings.



