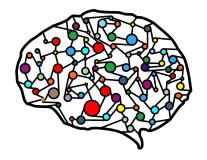
Lecture 16 – Clustering



DSC 40A, Fall 2022 @ UC San Diego Mahdi Soleymani, with help from many others

Announcements

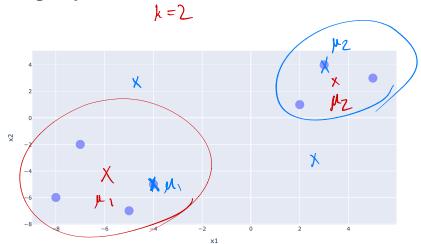
- ► Homework 4 due **Friday at 11:59pm**.
 - Remember to submit Survey 4 after finishing!
- For Groupwork 2 due tonight 11/1 at 11:59pm.

Agenda

- k-Means Clustering algorithm.
- ► Why does k-Means work?
- ► Practical considerations.

k-Means Clustering

Question: how might we "cluster" these points into groups?



Problem statement: clustering

Goal: Given a list of n data points, stored as vectors in \mathbb{R}^d , $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$, and a positive integer k, place the data points into k clusters of nearby points.

- ► Clusters are defined by **centroids**, $\mu_1, \mu_2, ..., \mu_k$. Each data point "belongs" to the group corresponding to the nearest centroid.
- ▶ We want to find the centroids that minimize inertia:

$$C(\mu_1, \mu_2, ..., \mu_k)$$
 = total squared distance of each data point \vec{x}_i to its closest centroid μ_i

▶ k-Means Clustering is an algorithm that attempts to minimize inertia.

k-Means Clustering, i.e. Lloyd's Algorithm

initialization

- belong to dataset
- 1. Pick a value of k and randomly initialize k centroids.
- 2. Keep the centroids fixed, and update the groups.
 - Assign each point to the nearest centroid.
 - 3. Keep the groups fixed, and update the centroids.
 - Move each centroid to the center of its group by averaging their coordinates.
 - 4. Repeat steps 2 and 3 until the centroids stop changing.

Example

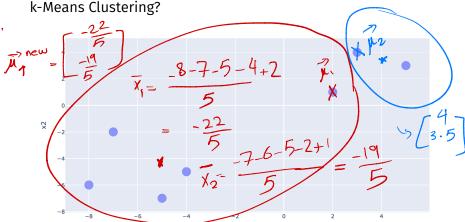
See the following site for an interactive visualization of k-Means Clustering: https://tinyurl.com/40akmeans

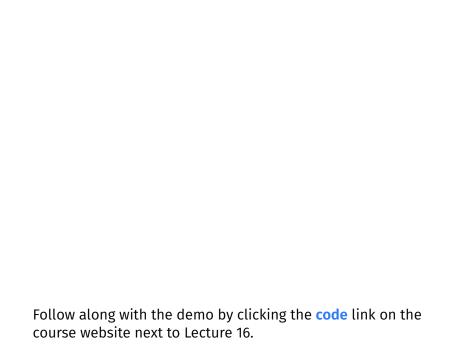
An example by-hand

k=2

Suppose we choose the initial centroids $\mu_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mu_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

Where will the centroids move to after one iteration of





Why does k-Means work?

What is the goal of k-Means Clustering?

Recall, our goal is to find the centroids $\mu_1, \mu_2, ..., \mu_k$ that minimize inertia:

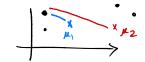
$$C(\mu_1, \mu_2, ..., \mu_k)$$
 = total squared distance of each data point \vec{x}_i to its closest centroid μ_i

- Let's argue that each step of the k-Means Clustering algorithm reduces inertia.
 - After enough iterations, inertia will be small enough.

Let's look at each step one at a time.

Step 1: Pick a value of *k* and randomly initialize *k* centroids.

After initializing our k centroids, we have an initial value of inertia. We are going to argue that this only decreases.



Step 2: Keep the centroids fixed, and update the groups by assigning each point to the nearest centroid.

- Assuming the centroids are fixed, for each \vec{x}_i we have a choice which group should it be a part of?
- Whichever group we choose, inertia will be calculated using the squared distance between \vec{x}_i and that group's centroid.
- Thus, to minimize inertia, we assign each \vec{x}_i to the group corresponding to the closest centroid.

Note that this analysis holds every time we're at Step 2, not just the first time.

Step 3: Keep the groups fixed, and update the centroids by moving each centroid to the center of its group (by averaging coordinates).

Before we justify why this is optimal, let's re-visit inertia.

Aside: separating inertia

Inertia: $C(\mu_1, \mu_2) = C(\mu_1) + C(\mu_2)$

$$C(\mu_1, \mu_2, ..., \mu_k)$$
 = total squared distance of each data point \vec{x}_i to its closest centroid μ_j

Note that an equivalent way to write inertia is

$$C(\mu_1, \mu_2, ..., \mu_k) = C(\mu_1) + C(\mu_2) + ... + C(\mu_k) \text{ where}$$

$$C(\mu_j) = \text{total squared distance of each}$$

$$\text{data point } \vec{x}_i \text{ in group } j$$

$$\text{to centroid } \mu_j$$

What's the point?

$$C(\mu_1, \mu_2, ..., \mu_k) = C(\mu_1) + C(\mu_2) + ... + C(\mu_k)$$
 where
$$C(\mu_j) = \text{total squared distance of each data point } \vec{x}_i$$
 in group j to centroid μ_j

Step 3: Keep the groups fixed, and update the centroids by moving each centroid to the center of its group (by averaging coordinates).

Let's argue why this minimizes $C(\mu_i)$, for each group j.

 $C(\mu_i)$ = total squared distance of each data point \vec{x}_i in group j to centroid μ_i

Suppose group j contains the points (4,3), (6,4), and (8,2).

Where should we put $\mu_j = \begin{bmatrix} a \\ b \end{bmatrix}$ to minimize $C(\mu_j)$?

$$C(a,b) = (4-a)^{2} + (3-b)^{2}$$

$$+ (6-a)^{2} + (4-b)^{2}$$

$$+ (8-a)^{2} + (2-b)^{2}$$

$$\alpha = \frac{4+6+8}{3}$$

$$b = \frac{3+4+2}{3}$$

$$b = \frac{3+4+2}{3}$$

$$\frac{1}{n}\sum_{i=1}^{n} (X_i - h)^2 \rightarrow h = Mean(X_i \le 1)$$

$$\frac{1}{n}\sum_{i=1}^{n} (X_{i}-h) \rightarrow h = hear(x)$$

$$C(a_{2}b) = (4-a)^{2} + (3-b)^{2} + (6-a)^{2}$$

 $\frac{\partial C}{\partial \alpha} = 2(4-\alpha)(-1) + 2(6-\alpha)(-1) + 2(8-\alpha)$

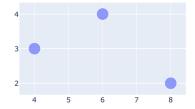
=> solve

for a

 $C(\mu_i)$ = total squared distance of each data point \vec{x}_i in group j to centroid μ_i

Suppose group j contains the points (4, 3), (6, 4), and (8, 2).

Where should we put $\mu_j = \begin{bmatrix} a \\ b \end{bmatrix}$ to minimize $C(\mu_j)$?



Cost and empirical risk

On the previous slide, we saw a function of the form

$$C(\mu_j) = C(a, b) = (4 - a)^2 + (3 - b)^2$$
$$+ (6 - a)^2 + (4 - b)^2$$
$$+ (8 - a)^2 + (2 - b)^2$$

- ightharpoonup C(a, b) can be thought of as the sum of two separate functions, f(a) and g(b).
 - ► $f(a) = (4 a)^2 + (6 a)^2 + (8 a)^2$ computes the total squared distance of each x_1 coordinate to a.
 - From earlier in the course, we know that $a^* = \frac{4+6+8}{3} = 6$ minimizes f(a).

Practical considerations

Initialization

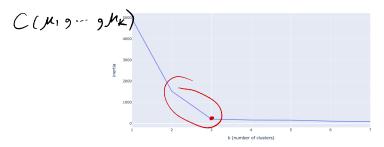
- Depending on our initial centroids, k-Means may "converge" to a clustering that doesn't actually have the lowest possible inertia.
 - In other words, like gradient descent, k-Means can get caught in a **local minimum**.
- Some solutions:
- Run k-Means several times, each with different randomly chosen initial centroids. Keep track of the inertia of the final result in each attempt. Choose the attempt with the lowest inertia.
 - k-Means++: choose one initial centroid at random, and choose the remaining initial centroids by maximizing distance from all other centroids.

Choosing *k*

- Note that as *k* increases, inertia decreases.
 - Intuitively, as we add more centroids, the distance between each point and its closest centroid will drop.
- But the goal of clustering is to put data points into groups, and having a large number of groups may not be meaningful.
- This suggests a tradeoff between k and inertia.

The "elbow" method

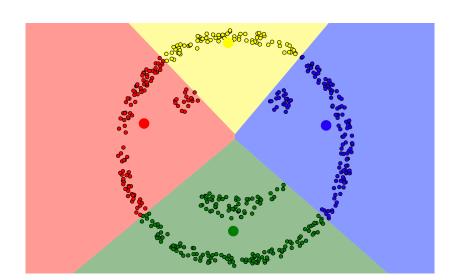
- Strategy: run k-Means Clustering for many choices of k (e.g. k = 1, 2, 3, ..., 8).
- Compute the value of inertia for each resulting set of centroids.
- ▶ Plot a graph of inertia vs k.
- Choose the value of k that appears at an "elbow".



See the notebook for a demo.

Low inertia isn't everything!

- Even if k-Means works as intended and finds the choice of centroids that minimize inertia, the resulting clustering may not look "right" to us humans.
 - Recall, inertia measures the total squared distance to centroids.
 - This metric doesn't always match our intuition.
- Let's look at some examples at https://tinyurl.com/40akmeans.
 - ► Go to "I'll Choose" and "Smiley Face". Good luck!



Other clustering techniques

- k-Means Clustering is just one way to cluster data.
- There are many others, each of which work differently and produce different kinds of results.
- Another common technique: agglomerative clustering.
 - ► High level: start out with each point being in its own cluster. Repeatedly combine clusters until only *k* are left.
- Check out this chart.

Summary, next time

Summary

- k-Means Clustering attempts to minimize inertia.
 - We showed that it minimizes inertia on each step, but it's possible that it converges to a local minimum.
 - Different initial centroids can lead to different clusterings.
- To choose *k*, the number of clusters, we can use the elbow method.
- Other clustering techniques may work better than k-Means Clustering in certain cases.
- Outcomes, sample spaces, and events are the "building blocks" of probability.

Next time

- A deep-dive on the fundamentals rules of probability.
- Important: We've posted many probability resources on the resources tab of the course website. These will no doubt come in handy.
 - No more DSC 40A-specific readings.