
Lecture 16 – Clustering (continued) and
Introduction to Probability

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others



Announcements
▶ Look at the readings linked on the course website!

▶ Groupwork Relsease Day: Thursday afternoon
Groupwork Submission Day: Monday midnight
Homework Release Day: Friday after lecture
Homework Submission Day: Friday before lecture

▶ See dsc40a.com/calendar for the Office Hours schedule.

▶ We will grade the midterm soon.

dsc40a.com/calendar


Agenda

▶ Review of k-Means clustering algorithm.

▶ Why does k-Means work?

▶ Practical considerations.

▶ Introduction to Probability



Summary: K-Means clustering
Goal: Given a list of 𝑛 data points, stored as vectors in ℝ𝑑 ,
⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, and a positive integer 𝑘, place the data points into
𝑘 clusters of nearby points.
▶ Clusters are defined by centroids, 𝜇1, 𝜇2, ..., 𝜇𝑘. Each data
point “belongs” to the group corresponding to the nearest
centroid.

▶ We want to find the centroids that minimize inertia:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖 to its
closest centroid 𝜇𝑗

▶ k-Means Clustering is an algorithm that attempts to
minimize inertia.



Summary: Lloyd’s Algorithm

1. Pick a value of 𝑘 and randomly initialize 𝑘 centroids.

2. Keep the centroids fixed, and update the groups.
▶ Assign each point to the nearest centroid.

3. Keep the groups fixed, and update the centroids.
▶ Move each centroid to the center of its group by
averaging their coordinates.

4. Repeat steps 2 and 3 until the centroids stop changing.



Summary: K-Means visualization



Why does k-Means work?



What is the goal of k-Means Clustering?

▶ Recall, our goal is to find the centroids 𝜇1, 𝜇2, ..., 𝜇𝑘 that
minimize inertia:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖 to its
closest centroid 𝜇𝑗

▶ Let’s argue that each step of the k-Means Clustering
algorithm reduces inertia.
▶ After enough iterations, inertia will be small enough.



Why does k-Means work? (Step 1)

Let’s look at each step one at a time.
Step 1: Pick a value of 𝑘 and randomly initialize 𝑘 centroids.
▶ After initializing our 𝑘 centroids, we have an initial value
of inertia. We are going to argue that this only decreases.



Why does k-Means work? (Step 2)

Step 2: Keep the centroids fixed, and update the groups by
assigning each point to the nearest centroid.
▶ Assuming the centroids are fixed, for each ⃗𝑥𝑖 we have a
choice — which group should it be a part of?

▶ Whichever group we choose, inertia will be calculated
using the squared distance between ⃗𝑥𝑖 and that group’s
centroid.

▶ Thus, to minimize inertia, we assign each ⃗𝑥𝑖 to the group
corresponding to the closest centroid.

Note that this analysis holds every time we’re at Step 2, not
just the first time.



Why does k-Means work? (Step 3)

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).
▶ Before we justify why this is optimal, let’s re-visit inertia.



Aside: separating inertia
▶ Inertia:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖to its
closest centroid 𝜇𝑗

▶ Note that an equivalent way to write inertia is

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = 𝐶(𝜇1) + 𝐶(𝜇2) + ... + 𝐶(𝜇𝑘) where
𝐶(𝜇𝑗) = total squared distance of each

data point ⃗𝑥𝑖 in group 𝑗
to centroid 𝜇𝑗

▶ What’s the point?



Why does k-Means work? (Step 3)

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = 𝐶(𝜇1) + 𝐶(𝜇2) + ... + 𝐶(𝜇𝑘) where
𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖

in group 𝑗 to centroid 𝜇𝑗

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).
▶ Let’s argue why this minimizes 𝐶(𝜇𝑗), for each group 𝑗.



Why does k-Means work? (Step 3)

𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖
in group 𝑗 to centroid 𝜇𝑗

Suppose group 𝑗 contains the points (4, 3), (6, 4), and (8, 2).
Where should we put 𝜇𝑗 = [

𝑎
𝑏] to minimize 𝐶(𝜇𝑗)?



Cost and empirical risk

▶ On the previous slide, we saw a function of the form

𝐶(𝜇𝑗) = 𝐶(𝑎, 𝑏) = (4 − 𝑎)2 + (3 − 𝑏)2

+ (6 − 𝑎)2 + (4 − 𝑏)2

+ (8 − 𝑎)2 + (2 − 𝑏)2

▶ 𝐶(𝑎, 𝑏) can be thought of as the sum of two separate
functions, 𝑓(𝑎) and 𝑔(𝑏).
▶ 𝑓(𝑎) = (4 − 𝑎)2 + (6 − 𝑎)2 + (8 − 𝑎)2 computes the total
squared distance of each 𝑥1 coordinate to 𝑎.

▶ From earlier in the course, we know that 𝑎∗ = 4+6+8
3 = 6

minimizes 𝑓(𝑎).



Practical considerations



Initialization
▶ Depending on our initial centroids, k-Means may
“converge” to a clustering that doesn’t actually have the
lowest possible inertia.
▶ In other words, like gradient descent, k-Means can
get caught in a local minimum.

▶ Some solutions:
▶ Run k-Means several times, each with different
randomly chosen initial centroids. Keep track of the
inertia of the final result in each attempt. Choose the
attempt with the lowest inertia.

▶ k-Means++: choose one initial centroid at random,
and choose the remaining initial centroids by
maximizing distance from all other centroids.

http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf


Choosing 𝑘

▶ Note that as 𝑘 increases, inertia decreases.
▶ Intuitively, as we add more centroids, the distance
between each point and its closest centroid will drop.

▶ But the goal of clustering is to put data points into
groups, and having a large number of groups may not be
meaningful.

▶ This suggests a tradeoff between 𝑘 and inertia.



The “elbow” method
▶ Strategy: run k-Means Clustering for many choices of 𝑘
(e.g. 𝑘 = 1, 2, 3, ..., 8).

▶ Compute the value of inertia for each resulting set of
centroids.

▶ Plot a graph of inertia vs 𝑘.
▶ Choose the value of 𝑘 that appears at an “elbow”.

See the notebook for a demo.



Low inertia isn’t everything!

▶ Even if k-Means works as intended and finds the choice of
centroids that minimize inertia, the resulting clustering
may not look “right” to us humans.
▶ Recall, inertia measures the total squared distance to
centroids.

▶ This metric doesn’t always match our intuition.

▶ Let’s look at some examples at
https://tinyurl.com/40akmeans.
▶ Go to “I’ll Choose” and “Smiley Face”. Good luck!

https://tinyurl.com/40akmeans




Other clustering techniques

▶ k-Means Clustering is just one way to cluster data.

▶ There are many others, each of which work differently and
produce different kinds of results.

▶ Another common technique: agglomerative (hierarchical)
clustering.
▶ High level: start out with each point being in its own
cluster. Repeatedly combine clusters until only 𝑘 are
left.

▶ Check out this chart.

https://scikit-learn.org/stable/_images/sphx_glr_plot_cluster_comparison_001.png


Agglomerative hierarchical clustering

▶ Agglomerative clustering is a “bottom-up” method for
creating hierarchical clusters.

▶ A dendrogram is a diagram representing a tree. For
example, the right figure is a dendrogram representing
the hierarchical clustering.



Agglomerative vs. Divisive



Summary of clustering methods

https:
//scikit-learn.org/stable/modules/clustering.html

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html


Summary of clustering methods

https:
//scikit-learn.org/stable/modules/clustering.html

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html


Introduction to Probability



Why do we need probability in Machine
Learning?

▶ Probability is one of the foundations of Machine Learning.

▶ Learning algorithms will make decisions using probability.
Classification models must predict a probability of class
membership.

▶ Algorithms are designed using probability (e.g. Naive
Bayes or Gaussian Mixture Models, etc.).

▶ The data we collect/observe can be understood as
samples from some probability distribution.



What is probability?

Informally, a probability distribution 𝑝 ∶ 𝑋 → ℝ over some
domain 𝑋 is a function such that ∑𝑥∈𝑋 𝑝(𝑥) = 1 and 𝑝(𝑥) ≥ 0 for
all 𝑥 ∈ 𝑋 .

Example:
▶ We toss a fair coin, what is the probability of getting head
and tail? 𝑝(head) = 𝑝(tail) = 0.5

▶ We toss a fair dice, what is the probability of getting 1, 2,
3, 4, 5, and 6, respectively? 𝑝(𝑖) = 1

6 , ∀𝑖 ∈ {1, .., 6}

▶ If we toss the fair coin and the fair dice infinite number of
times, what does the frequencies look like? Tends to the
uniform distribution.



What is probability?

Informally, a probability distribution 𝑝 ∶ 𝑋 → ℝ over some
domain 𝑋 is a function such that ∑𝑥∈𝑋 𝑝(𝑥) = 1 and 𝑝(𝑥) ≥ 0 for
all 𝑥 ∈ 𝑋 .

Example:
▶ We toss a fair coin, what is the probability of getting head
and tail?

𝑝(head) = 𝑝(tail) = 0.5

▶ We toss a fair dice, what is the probability of getting 1, 2,
3, 4, 5, and 6, respectively? 𝑝(𝑖) = 1

6 , ∀𝑖 ∈ {1, .., 6}

▶ If we toss the fair coin and the fair dice infinite number of
times, what does the frequencies look like? Tends to the
uniform distribution.



What is probability?

Informally, a probability distribution 𝑝 ∶ 𝑋 → ℝ over some
domain 𝑋 is a function such that ∑𝑥∈𝑋 𝑝(𝑥) = 1 and 𝑝(𝑥) ≥ 0 for
all 𝑥 ∈ 𝑋 .

Example:
▶ We toss a fair coin, what is the probability of getting head
and tail? 𝑝(head) = 𝑝(tail) = 0.5

▶ We toss a fair dice, what is the probability of getting 1, 2,
3, 4, 5, and 6, respectively?

𝑝(𝑖) = 1
6 , ∀𝑖 ∈ {1, .., 6}

▶ If we toss the fair coin and the fair dice infinite number of
times, what does the frequencies look like? Tends to the
uniform distribution.



What is probability?

Informally, a probability distribution 𝑝 ∶ 𝑋 → ℝ over some
domain 𝑋 is a function such that ∑𝑥∈𝑋 𝑝(𝑥) = 1 and 𝑝(𝑥) ≥ 0 for
all 𝑥 ∈ 𝑋 .

Example:
▶ We toss a fair coin, what is the probability of getting head
and tail? 𝑝(head) = 𝑝(tail) = 0.5

▶ We toss a fair dice, what is the probability of getting 1, 2,
3, 4, 5, and 6, respectively? 𝑝(𝑖) = 1

6 , ∀𝑖 ∈ {1, .., 6}

▶ If we toss the fair coin and the fair dice infinite number of
times, what does the frequencies look like?

Tends to the
uniform distribution.



What is probability?

Informally, a probability distribution 𝑝 ∶ 𝑋 → ℝ over some
domain 𝑋 is a function such that ∑𝑥∈𝑋 𝑝(𝑥) = 1 and 𝑝(𝑥) ≥ 0 for
all 𝑥 ∈ 𝑋 .

Example:
▶ We toss a fair coin, what is the probability of getting head
and tail? 𝑝(head) = 𝑝(tail) = 0.5

▶ We toss a fair dice, what is the probability of getting 1, 2,
3, 4, 5, and 6, respectively? 𝑝(𝑖) = 1

6 , ∀𝑖 ∈ {1, .., 6}

▶ If we toss the fair coin and the fair dice infinite number of
times, what does the frequencies look like? Tends to the
uniform distribution.


