Lecture 17 - Foundations of Probability

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Announcements

- Look at the readings linked on the course website!
- Groupwork Relsease Day: Thursday afternoon Groupwork Submission Day: Monday midnight Homework Release Day: Friday after lecture Homework Submission Day: Friday before lecture
\Rightarrow See dsc4ea. com/calendar for the Office Hours schedule.
- We will grade the midterm soon.

Agenda

- Solution to the Midterm
- Probability: Complement \& addition

Solution to the Midterm

Introduction to Probability

Why do we need probability in Machine Learning?

- Probability is one of the foundations of Machine Learning.
- Learning algorithms will make decisions using probability. Classification models must predict a probability of class membership.
$>$ Algorithms are designed using probability (e.g. Naive Bayes or Gaussian Mixture Models, etc.).
- The data we collect/observe can be understood as samples from some probability distribution.

What is probability?

Informally, a probability distribution $p: X \rightarrow \mathbb{R}$ over some domain X is a function such that $\sum_{x \in X} p(x)=1$ and $p(x) \geq 0$ for all $x \in X$.

What is probability?

Informally, a probability distribution $p: X \rightarrow \mathbb{R}$ over some domain X is a function such that $\sum_{x \in X} p(x)=1$ and $p(x) \geq 0$ for all $x \in X$.

Example:

- We toss a fair coin, what is the probability of getting head and tail?

What is probability?

Informally, a probability distribution $p: X \rightarrow \mathbb{R}$ over some domain X is a function such that $\sum_{x \in X} p(x)=1$ and $p(x) \geq 0$ for all $x \in X$.

Example:

- We toss a fair coin, what is the probability of getting head and tail? $p($ head $)=p($ tail $)=0.5$
- We toss a fair dice, what is the probability of getting 1,2 , $3,4,5$, and 6 , respectively?

What is probability?

Informally, a probability distribution $p: X \rightarrow \mathbb{R}$ over some domain X is a function such that $\sum_{x \in X} p(x)=1$ and $p(x) \geq 0$ for all $x \in X$.

Example:

- We toss a fair coin, what is the probability of getting head and tail? $p($ head $)=p($ tail $)=0.5$
- We toss a fair dice, what is the probability of getting 1,2 , $3,4,5$, and 6 , respectively? $p(i)=\frac{1}{6}, \forall i \in\{1, . ., 6\}$
- If we toss the fair coin and the fair dice infinite number of times, what does the frequencies look like?

What is probability?

Informally, a probability distribution $p: X \rightarrow \mathbb{R}$ over some domain X is a function such that $\sum_{x \in X} p(x)=1$ and $p(x) \geq 0$ for all $x \in X$.

Example:

- We toss a fair coin, what is the probability of getting head and tail? $p($ head $)=p($ tail $)=0.5$
- We toss a fair dice, what is the probability of getting 1,2 , $3,4,5$, and 6 , respectively? $p(i)=\frac{1}{6}, \forall i \in\{1, . ., 6\}$
- If we toss the fair coin and the fair dice infinite number of times, what does the frequencies look like? Tends to the uniform distribution.

Probability: Complement \& addition

Sets

A set is an unordered collection of items.

- A sample space, S, is the set of all possible outcomes of an experiment.
\Rightarrow An event, A is a subset of the sample space. In other words, an event is a set of outcomes.
- Notationally: $A \subseteq S$.
$>|A|$ denotes the number of elements (i.e. cardinality) in set A.

Equally-likely outcomes

- If S is a sample space with n possible outcomes, and all outcomes are equally-likely, then the probability of any one outcome occurring is $\frac{1}{n}$.
- The probability of an event A, then, is

$$
P(A)=\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n}=\frac{\# \text { of outcomes in } A}{\# \text { of outcomes in } S}=\frac{|A|}{|S|}
$$

- Example: Flip a (fair) coin three times and we record head/tail each time. How large is the sample space S ?

Equally-likely outcomes

- If S is a sample space with n possible outcomes, and all outcomes are equally-likely, then the probability of any one outcome occurring is $\frac{1}{n}$.
- The probability of an event A, then, is

$$
P(A)=\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n}=\frac{\# \text { of outcomes in } A}{\# \text { of outcomes in } S}=\frac{|A|}{|S|}
$$

- Example: Flip a (fair) coin three times and we record head/tail each time. How large is the sample space S ? $|S|=8$.
If event A is when head appears exactly once during 3 times, what are $|A|$ and $P(A)$?

Equally-likely outcomes

- If S is a sample space with n possible outcomes, and all outcomes are equally-likely, then the probability of any one outcome occurring is $\frac{1}{n}$.
- The probability of an event A, then, is

$$
P(A)=\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n}=\frac{\# \text { of outcomes in } A}{\# \text { of outcomes in } S}=\frac{|A|}{|S|}
$$

- Example: Flip a (fair) coin three times and we record head/tail each time. How large is the sample space S ? $|S|=8$.
If event A is when head appears exactly once during 3 times, what are $|A|$ and $P(A) ?|A|=3$ and $P(A)=3 / 8$.

Complement rule

- Let A be an event with probability $P(A)$.
- Then, the event \bar{A} is the complement of the event A. It contains the set of all outcomes in the sample space that are not in A.
- $P(\bar{A})$ is given by

$$
P(\bar{A})=1-P(A)
$$

- Example: Flip a coin 3 times again. What is the probability that there is at least 1 tail?

Complement rule

- Let A be an event with probability $P(A)$.
- Then, the event \bar{A} is the complement of the event A. It contains the set of all outcomes in the sample space that are not in A.
- $P(\bar{A})$ is given by

$$
P(\bar{A})=1-P(A)
$$

- Example: Flip a coin 3 times again. What is the probability that there is at least 1 tail?
Suppose A is the event such that there is no tail. Then, \bar{A} is the event that there is at least 1 tail.

Complement rule

- Let A be an event with probability $P(A)$.
- Then, the event \bar{A} is the complement of the event A. It contains the set of all outcomes in the sample space that are not in A.
- $P(\bar{A})$ is given by

$$
P(\bar{A})=1-P(A)
$$

- Example: Flip a coin 3 times again. What is the probability that there is at least 1 tail?
Suppose A is the event such that there is no tail. Then, \bar{A} is the event that there is at least 1 tail. We have $|A|=1$ (i.e. head-head-head) and $P(A)=1 / 8$. Therefore, $P(\bar{A})=7 / 8$.

Addition rule

- We say two events are mutually exclusive if they have no overlap (i.e. they can't both happen at the same time).
- If A and B are mutually exclusive, then the probability that A or B happens is

$$
P(A \cup B)=P(A)+P(B)
$$

- Example: Flip a fair coin 3 times again. A is the event in which head appears exactly once. B is the event in which head appears exactly twice. What is the probability that head appears once or twice?

Addition rule

- We say two events are mutually exclusive if they have no overlap (i.e. they can't both happen at the same time).
- If A and B are mutually exclusive, then the probability that A or B happens is

$$
P(A \cup B)=P(A)+P(B)
$$

- Example: Flip a fair coin 3 times again. A is the event in which head appears exactly once. B is the event in which head appears exactly twice. What is the probability that head appears once or twice?
$|A|=3$ and $P(A)=3 / 8$.

Addition rule

- We say two events are mutually exclusive if they have no overlap (i.e. they can't both happen at the same time).
- If A and B are mutually exclusive, then the probability that A or B happens is

$$
P(A \cup B)=P(A)+P(B)
$$

- Example: Flip a fair coin 3 times again. A is the event in which head appears exactly once. B is the event in which head appears exactly twice. What is the probability that head appears once or twice?
$|A|=3$ and $P(A)=3 / 8$.
$|B|=3$ and $P(B)=3 / 8$.

Addition rule

- We say two events are mutually exclusive if they have no overlap (i.e. they can't both happen at the same time).
- If A and B are mutually exclusive, then the probability that A or B happens is

$$
P(A \cup B)=P(A)+P(B)
$$

- Example: Flip a fair coin 3 times again. A is the event in which head appears exactly once. B is the event in which head appears exactly twice. What is the probability that head appears once or twice?
$|A|=3$ and $P(A)=3 / 8$.
$|B|=3$ and $P(B)=3 / 8$.
Therefore, $P(A \cup B)=3 / 4$. Is there another way to compute this?

Addition rule

- We say two events are mutually exclusive if they have no overlap (i.e. they can't both happen at the same time).
- If A and B are mutually exclusive, then the probability that A or B happens is

$$
P(A \cup B)=P(A)+P(B)
$$

- Example: Flip a fair coin 3 times again. A is the event in which head appears exactly once. B is the event in which head appears exactly twice. What is the probability that head appears once or twice?
$|A|=3$ and $P(A)=3 / 8$.
$|B|=3$ and $P(B)=3 / 8$.
Therefore, $P(A \cup B)=3 / 4$. Is there another way to compute this? Yes, via complement rule.

