Lecture 19 - Conditional Probability, Combinatorics

DSC 40A, Fall 2022 @ UC San Diego
Mahdi Soleymani, with help from many others

Agenda

- Finish conditional probability examples.
- Sequences, permutations, and combinations.
- Practice problems.

Example: dominoes (source: 538)

In a set of dominoes, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five, or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.

Example: dominoes (source: 538)
Question 1: What is the probability of drawing a "double" from a set of dominoes - that is, a tile with the same number on both sides?

$$
\begin{aligned}
& S=\{\text { All possible Dominus }\} \\
& |S|=28 \\
& A=\{00,11,22, \ldots, 66\} \\
& |A|=7 \quad P(A)=\frac{7}{28}=\frac{1}{4}
\end{aligned}
$$

Example: dominoes (source: 538)
Question 2: Now your friend picks a random tile from the set and tells you that at least one of the sides is a 6 . What is the probability that your friend's tile is a double, with 6 on both sides?

$B=\{$ tiles with at least one 6$\} \quad|B|=7$

$$
\begin{array}{cc}
B=\left\{\frac{66}{}\right\} & P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{28}}{\frac{7}{28}} \\
A \cap B=A & =\frac{1}{7}
\end{array}
$$

Example: dominoes (source: 538)
Question 3: Now you pick a random tile from the set \uparrow and uncover only one side, revealing that it has six dots. What is the probability that this tile is a double, with six on both sides?

$$
\begin{aligned}
& A=\left\{\left(T_{7}, S_{1}\right), T_{1}\left(T_{7}, T_{2}\right)\right\} \\
& S=\left\{\left(T_{1}, S_{1}\right) \cdots\right\} \quad|S|=2 \times 28=56 \\
& B=\left\{\left(T_{1}, S_{1}\right),\left(T_{2}, S_{1}\right),\left(T_{3}, S_{1}\right) \cdots,\left(T_{7}, S_{1}\right)\right)
\end{aligned}
$$

Simpson's Paradox (source: nih.gov)

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	5uccesses / 8 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Discussion Question

Which treatment is better?
A) Treatment A for all cases.
B) Treatment B for all cases.
C) Treatment A for small stones and B for large stones.
D) Treatment A for large stones and B for small stones. To answer, go to menti . com and enter 47719448.

Simpson's Paradox (source: nih.gov)

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Simpson's Paradox occurs when an association between two variables exists when the data is divided into subgroups, but reverses or disappears when the groups are combined.

- See more in DSC 80.

Sequences, permutations, and combinations

Motivation

- Many problems in probability involve counting.
- Suppose I flip a fair coin 100 times. What's the probability I see 34 heads?
- Suppose I draw 3 cards from 52 card deck. What's the probability they all are all from the same suit?
- In order to solve such problems, we first need to learn how to count.
- The area of math that deals with counting is called combinatorics.

Selecting elements (i.e. sampling)

- Many experiments involve choosing k elements randomly from a group of n possible elements. This group is called a population.
- If drawing cards from a deck, the population is the deck of all cards.
- If selecting people from DSC 40A, the population is everyone in DSC 40A.
- Two decisions:
- Do we select elements with or without replacement?
- Does the order in which things are selected matter?

Sequences
Coin 5 times $\quad T T H H T \neq H H T T T$
A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.

Example: Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.
$52525252=52^{4} \quad \#$ possiblites

Example: A UCSD PID starts with "A" then has 8 digits. How many UCSD RIDs are possible?
\qquad
10

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that repetition is allowed and order matters is n^{k}.

(Note: We mentioned this fact in the first lecture on clustering!)

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.

Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?

$$
\begin{gathered}
A B C D E F G H \\
\frac{8}{P} \frac{7}{V P} \frac{6}{5}=\frac{8.7 \cdot 6 \cdot 5 \cdot 4 \cdot 3.211}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
=\frac{8!}{5!}
\end{gathered}
$$

Permutations

- In general, the number of ways to select k elements from a group of n possible elements such that repetition is not allowed and order matters is

$$
P(n, k)=(n)(n-1) \ldots(n-k+1)
$$

- To simplify: recall that the definition of n ! is

$$
n!=(n)(n-1) \ldots(2)(1)
$$

- Given this, we can write

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

Discussion Question
UCSD has 7 colleges. How many ways can I rank my top 3 choices?
A) 21
B) 210
C) 343
D) 2187
E) None of the above

E
S
M
$P(n, k)=P(7, \beta)$
To answer, go to menti . com and enter 47719448.

$$
P_{(7,3)}=\frac{7!}{(7-3)!}=\frac{7 \cdot 6 \cdot 54!}{4!}=210
$$

Special case of permutations

- Suppose we have n people. The total number of ways I can rearrange these n people in a line is

$1=n!$
\Rightarrow This is consistent with the formula

$$
\begin{aligned}
& P(n, n) \\
& \downarrow=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{1}=n! \\
& k=n
\end{aligned}
$$

Combinations

- A combination is a set of k items selected from a group of n possible elements without replacement, such that order does not matter.

Example: There are 24 ice cream flavors. How many ways can you pick two flavors?
Strawberry \& Vamila

$$
\begin{aligned}
& \frac{24}{23}=24 \times 23 \\
& \text { double count ways }=\frac{24 \times 23}{2}= \\
&
\end{aligned}
$$

Vamila \& straubary

From permutations to combinations

- There is a close connection between:
- the number of permutations of k elements selected from a group of n, and
- the number of combinations of k elements selected from a group of n
3 flavors out of 24
$\#$ combinations $=\frac{\# \text { permutations }}{\# \text { orderings of } k \text { items }}$
$\begin{aligned} C, S \text { S. } V \text { combinations } & = \\ & \text { \# order } \\ & \text { Since } \# \text { permutations }=\frac{n!}{(n-k)!} \text { and }\end{aligned}$ \# orderings of k items = k !, we have

$$
C(n, k)=\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

Combinations

In general, the number of ways to select k elements from a group of n elements such that repetition is not allowed and order does not matter is

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

The symbol $\binom{n}{k}$ is pronounced " n choose k ", and is also known as the binomial coefficient.

Example: committees

- How many ways are there to select a president, vice president, and secretary from a group of 8 people?

$$
P(8,3)
$$

- How many ways are there to select a committee of 3 people from a group of 8 people?

$$
\binom{n}{k}=\binom{8}{3}
$$

- If you're ever confused about the difference between permutations and combinations, come back to this example.

Discussion Question
A domino consists of two faces, each with anywhere between 0 and 6 dots. A set of dominoes consists of every possible combination of dots on each face.
How many dominoes are in the set of dominoes?
A) $\binom{7}{2}$

$$
\frac{7 \times 6}{2}
$$

B) $\binom{7}{1}+\binom{7}{2}$
C) $P(7,2)$
D) $\frac{P(7,2)}{P(7,1)} 7!$

To answer, go to menti. com and enter 47719448.

$$
\binom{7}{2}+\binom{7}{1}=21
$$

$$
+7=2
$$

More examples

Counting and probability

- If S is a sample space consisting of equally-likely outcomes, and A is an event, then $P(A)=\frac{|A|}{|S|}$.
- In many examples, this will boil down to using permutations and/or combinations to count $|A|$ and $|S|$.
- Tip: Before starting a probability problem, always think about what the sample space S is!

Selecting students - overview

We're going to start by answering the same question using several different techniques.

Question 1: There are 20 students in a class. Billy is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Billy is among the 5 selected students?

Selecting students (Method 1: using permutations)

Question 1: There are 20 students in a class. Billy is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Billy is among the 5 selected students?

$$
\begin{aligned}
& S=\{\text { Permutations of } 5 \text { students }\} \\
& |S|=P(20,5)
\end{aligned}
$$

$A=\{$ Perms. of students including Billy $\}$

$$
P(A)=\frac{|A|}{|S|}=\frac{}{P(20,5)}
$$

$$
\begin{aligned}
\Rightarrow \frac{B}{19} \frac{19}{B} \frac{18}{18} \frac{17}{B} \frac{16}{16} & =P(19,4) \\
- & B \\
|A| & =5 \times P(19,4) \\
\frac{|A|}{15 \mid}=\frac{5 \times P(19,4)}{P(20,5)} & =\frac{5}{20}+19
\end{aligned}
$$

Selecting students (Method 2: using permutations and the complement)

$$
P(A)=1-P(\bar{A})
$$

Question 1: There are 20 students in a class. Billy is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Billy is among the 5 selected students?

$$
\begin{aligned}
& S=\{\text { All perm. of } 5\} \Rightarrow|S|=P(20,5) \\
& A=\{\cdots\} \text { \# Perms. of } 5 \text { students } \\
& P(A)=1-P(\bar{A})=1-\frac{\text { out of } 19}{|s|} \\
& \begin{array}{r}
=1-\frac{P(19,5)}{P(20,5)}=1-\frac{19 \cdot 18 \cdot 17 \cdot 16 \cdot 15}{20 \cdot 19 \cdot 16}=1-\frac{15}{20} \\
=1-3 / 4=1 / 4
\end{array}
\end{aligned}
$$

Selecting students (Method 3: using combinations)

$$
\left\{\begin{array}{l}
\text { dents (Method 3: using } \\
A, B, C, D, E]=\{B, A, D, C, E\}
\end{array}\right.
$$

Question 1: There are 20 students in a class. Billy is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Billy is among the 5 selected students?
$S=\{$ Combinations of 5 students out of 20$\}$

$$
\begin{aligned}
& |S|=\binom{20}{5} \quad|W|=\binom{19}{4} \\
& W=\left\{\begin{array}{l}
\text { Al| combinations } \quad \text { Billy included }\} \\
P(W)=\frac{|W|}{|S|}=\frac{\binom{19}{4}}{\binom{20}{5}}=\frac{\frac{19!}{4!15!}}{\frac{20!}{5!15!}}=\frac{19!}{15!4!} \frac{5}{20}=1 / 4
\end{array} . \frac{15!}{20!}\right.
\end{aligned}
$$

Selecting students (Method 3: using combinations)

Question 1, Part 1 (Denominator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals could you draw?

$$
\text { \# Combinations of } 5 \text { out of } 20
$$

$$
\binom{5}{20}
$$

Selecting students (Method 3: using combinations)

Question 1, Part 2 (Numerator): If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals include Billy?

Billy is already picked.
4 other choices left
\# combinations of 4 out of $20-1=19$

$$
\binom{19}{4}
$$

Selecting students (Method 3: using combinations)

Question 1: There are 20 students in a class. Billy is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Billy is among the 5 selected students?

$$
P(w)=\frac{\binom{19}{4}}{\binom{20}{5}}=\frac{5}{20}=\frac{1}{4}
$$

Selecting students (Method 4: "the easy way")

Question 1: There are 20 students in a class. Billy is one of them. Suppose we select 5 students in the class uniformly at random without replacement. What is the probability that Billy is among the 5 selected students?
(1) Give all 20 students a number
(2) shuffle
 First 5 in the line

With vs. without replacement

Discussion Question

We've determined that a probability that a random sample of 5 students from a class of 20 without replacement contains Billy (one student in particular) is $\frac{1}{4}$. Suppose we instead sampled with replacement. Would the resulting probability be equal to, greater than, or less than $\frac{1}{4}$?
A) Equal to
B) Greater than
C) Less than

To answer, go to menti. com and enter 3790997.

$$
\begin{aligned}
& P(\text { Billy })=1-P\left(N_{0} \text { Billy }\right) \\
& =1-\left(\frac{19}{20}\right)\left(\frac{19}{20}\right)\left(\frac{19}{20}\right)\left(\frac{19}{20}\right)\left(\frac{19}{20}\right) \\
& =1-\left(\frac{19}{20}\right)^{5} \cong 0.226<\frac{1}{4}= \\
& 0.25
\end{aligned}
$$

Summary

Summary

\Rightarrow A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
\downarrow Number of sequences: n^{k}.

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Number of permutations: $P(n, k)=\frac{n!}{(n-k)!}$.
- A combination is obtained by selecting k elements from a group of n possible elements without replacement, such that order does not matter.
- Number of combinations: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.

