Lecture 19 - Combinatorics

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Agenda

- Conditional probability (continued).
- Sequences, permutations, and combinations.
- Practice problems.

Example: rolling a die

- Suppose we roll the dice n times. What is the probability that only the faces 2,4 , and 5 appear?

$$
\left(\frac{1}{2}\right)^{n}
$$

- Suppose we roll the dice twice. What is the probability that the two rolls have different faces?

$$
\frac{5}{6}
$$

Conditional probability

- The probability of an event may change if we have additional information about outcomes.
- Starting with the multiplication rule, $P(A \cap B)=P(A) P(B \mid A)$, we have that

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

assuming that $P(A)>0$.

Example: dominoes (source: 538)

In a set of dominoes, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five, or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.

Example: dominoes

Question 1: What is the probability of drawing a "double" from a set of dominoes - that is, a tile with the same number on both sides?

Example: dominoes

Question 1: What is the probability of drawing a "double" from a set of dominoes - that is, a tile with the same number on both sides?

$$
\frac{7}{28}=\frac{1}{4}
$$

Example: dominoes

Question 2: Now your friend picks a random tile from the set and tells you that at least one of the sides is a 6 . What is the probability that your friend's tile is a double, with 6 on both sides?

Example: dominoes

Question 2: Now your friend picks a random tile from the set and tells you that at least one of the sides is a 6 . What is the probability that your friend's tile is a double, with 6 on both sides?

$$
\frac{1}{7}
$$

Simpson's Paradox (source: nih.gov)

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Discussion Question

Which treatment is better?
A) Treatment A for all cases.
B) Treatment B for all cases.
C) Treatment A for small stones and B for large stones.
D) Treatment A for large stones and B for small stones.

Simpson's Paradox (source: nih.gov)

Let A be a random variable taking value True if treatment A is effective, or False otherwise. Let X be a random variable taking values, small or large, denoting the size of the kidney stone.

By the Law of Total Probability, We have:

$$
\begin{gathered}
P(A=\text { True })=P(A=\text { True } \mid X=\text { small }) \cdot P(X=\text { small })+ \\
P(A=\text { True } \mid X=\text { large }) \cdot P(X=\text { large })
\end{gathered}
$$

Theat is equal to:

$$
P(A=\text { True })=\frac{81}{87} \cdot \frac{87}{350}+\frac{192}{263} \cdot \frac{263}{350}=\frac{273}{350}=78 \%
$$

Simpson's Paradox (source: nih.gov)

Let B be a random variable taking value True if treatment B is effective, or False otherwise. Let Y be a random variable taking values, small or large, denoting the size of the kidney stone. We use Y not X because for each experiment for each treatment, 350 different people.

By the Law of Total Probability, We have:

$$
\begin{gathered}
P(B=\text { True })=P(B=\text { True } \mid Y=\text { small }) \cdot P(Y=\text { small })+ \\
P(B=\text { True } \mid Y=\text { large }) \cdot P(Y=\text { large })
\end{gathered}
$$

Theat is equal to:

$$
P(B=\text { True })=\frac{234}{270} \cdot \frac{270}{350}+\frac{55}{80} \cdot \frac{80}{350}=\frac{289}{350}=83 \%
$$

Simpson's Paradox (source: nih.gov)

It is called a paradox because:

$$
\begin{aligned}
& P(B=\text { True } \mid Y=\text { small })<P(A=\text { True } \mid X=\text { small }) \\
& P(B=\text { True } \mid Y=\text { large })<P(A=\text { True } \mid X=\text { large })
\end{aligned}
$$

But

$$
P(B=\text { True })>P(A=\text { True }) .
$$

The problem lies in the fact that distributions of X and Y are approximations (based on sampling) of the actual distribution of patients with small or large kidney stones.
How can we fix this?
We need to make a better approximation of the distribution of patients with small or large stones.

Simpson's Paradox (source: nih.gov)

There are totally $700=350+350$ patients in which:

- $87+270=357$ have small stones: $357 / 700=51 \%$, denoted by P (small)
- $263+80=343$ have large stones: 343/700 $=49 \%$, denoted by P (large)

Simpson's Paradox (source: nih.gov)

There are totally $700=350+350$ patients in which:

- $87+270=357$ have small stones: $357 / 700=51 \%$, denoted by P (small)
- $263+80=343$ have large stones: 343/700 $=49 \%$, denoted by P(large)
By the Law of Total Probability, we have the actual effectiveness of A is:
$P(A=$ True $) \approx P(A=$ True \mid small $) \cdot P($ small $)+P(A=$ True \mid large $) \cdot P($ large $)$
That equals to:

$$
P(A=\text { True }) \approx 93 \% \cdot 51 \%+73 \% \cdot 49 \%=83.2 \%
$$

Simpson's Paradox (source: nih.gov)

By the Law of Total Probability, we have the actual effectiveness of B is:
$P(B=$ True $) \approx P(B=$ True \mid small $) \cdot P($ small $)+P(B=$ True \mid large $) \cdot P($ large $)$
That equals to:

$$
P(B=\text { True }) \approx 87 \% \cdot 51 \%+69 \% \cdot 49 \%=81.24 \%
$$

Now, we can conclude that treat A is better in general.

Simpson's Paradox (source: nih.gov)

	Treatment A	Treatment B
Small kidney stones	81 successes / 87 (93%)	234 successes / 270 (87%)
Large kidney stones	192 successes / 263 (73%)	55 successes / 80 (69%)
Combined	273 successes / 350 (78%)	289 successes / 350 (83%)

Simpson's Paradox occurs when an association between two variables exists when the data is divided into subgroups, but reverses or disappears when the groups are combined.

- See more in DSC 80.

Sequences, permutations, and combinations

Motivation

- Many problems in probability involve counting.
- Suppose I flip a fair coin 100 times. What's the probability I see 34 heads?
- Suppose I draw 3 cards from a 52 card deck. What's the probability they all are all from the same suit?
- In order to solve such problems, we first need to learn how to count.
- The area of math that deals with counting is called combinatorics.

Selecting elements (i.e. sampling)

- Many experiments involve choosing k elements randomly from a group of n possible elements. This group is called a population.
- If drawing cards from a deck, the population is the deck of all cards.
- If selecting people from DSC 40A, the population is everyone in DSC 40A.
- Two decisions:
- Do we select elements with or without replacement?
- Does the order in which things are selected matter?

Sequences

\Rightarrow A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.

- Example: Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.

Sequences

\Rightarrow A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.

- Example: Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.
52^{4}
- Example: A UCSD PID starts with " A " then has 8 digits. How many UCSD PIDs are possible?

Sequences

\Rightarrow A sequence of length k is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.

- Example: Draw a card (from a standard 52-card deck), put it back in the deck, and repeat 4 times.
52^{4}
- Example: A UCSD PID starts with " A " then has 8 digits. How many UCSD PIDs are possible?

$$
10^{8}=100,000,000
$$

Sequences

In general, the number of ways to select k elements from a group of n possible elements such that repetition is allowed and order matters is n^{k}.
(Note: We mentioned this fact in the first lecture on clustering!)

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Permutations

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Example: How many ways are there to select a president, vice president, and secretary from a group of 8 people?
President: 8 choices
Vice: 7 choices
Secretary: 6 choices
Total: $8 \cdot 7 \cdot 6=336$

Permutations

- In general, the number of ways to select k elements from a group of n possible elements such that repetition is not allowed and order matters is

$$
P(n, k)=(n)(n-1) \ldots(n-k+1)
$$

- To simplify: recall that the definition of n ! is

$$
n!=(n)(n-1) \ldots(2)(1)
$$

- Given this, we can write

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

Discussion Question

UCSD has 7 colleges. How many ways can I rank my top 3 choices?
A) 21
B) 210
C) 343
D) 2187
E) None of the above

Discussion Question

UCSD has 7 colleges. How many ways can I rank my top 3 choices?
A) 21
B) 210
C) 343
D) 2187
E) None of the above

Answer: B) $7 \cdot 6 \cdot 5=210$

Special case of permutations

- Suppose we have n people. The total number of ways I can rearrange these n people in a line is

$$
n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1=n!
$$

This is consistent with the formula

$$
P(n, n)=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{1}=n!
$$

Combinations

- A combination is a set of k items selected from a group of n possible elements without replacement, such that order does not matter.
- Example: There are 24 ice cream flavors. How many ways can you pick two flavors?

Combinations

- A combination is a set of k items selected from a group of n possible elements without replacement, such that order does not matter.
- Example: There are 24 ice cream flavors. How many ways can you pick two flavors?

$$
\frac{24 \cdot 23}{2}=276
$$

From permutations to combinations

- There is a close connection between:
- the number of permutations of k elements selected from a group of n, and
$>$ the number of combinations of k elements selected from a group of n

$$
\text { \# combinations }=\frac{\# \text { permutations }}{\# \text { orderings of } k \text { items }}
$$

- Since \# permutations $=\frac{n!}{(n-k)!}$ and \# orderings of k items = k !, we have

$$
C(n, k)=\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

Combinations

In general, the number of ways to select k elements from a group of n elements such that repetition is not allowed and order does not matter is

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

The symbol $\binom{n}{k}$ is pronounced " n choose k ", and is also known as the binomial coefficient.

Example: committees

- How many ways are there to select a president, vice president, and secretary from a group of 8 people?

Example: committees

- How many ways are there to select a president, vice president, and secretary from a group of 8 people?

$$
8 \cdot 7 \cdot 6=336
$$

- How many ways are there to select a committee of 3 people from a group of 8 people?

Example: committees

- How many ways are there to select a president, vice president, and secretary from a group of 8 people?

$$
8 \cdot 7 \cdot 6=336
$$

- How many ways are there to select a committee of 3 people from a group of 8 people?

$$
\binom{8}{3}=\frac{8 \cdot 7 \cdot 6}{6}=56
$$

- If you're ever confused about the difference between permutations and combinations, come back to this example.

Discussion Question

A domino consists of two faces, each with anywhere between 0 and 6 dots. A set of dominoes consists of every possible combination of dots on each face. How many dominoes are in the set of dominoes?
A) $\binom{7}{2}$
B) $\binom{7}{1}+\binom{7}{2}$
C) $P(7,2)$
D) $\frac{P(7,2)}{P(7,1)} 7$!

Discussion Question

A domino consists of two faces, each with anywhere between 0 and 6 dots. A set of dominoes consists of every possible combination of dots on each face. How many dominoes are in the set of dominoes?
A) $\binom{7}{2}$
B) $\binom{7}{1}+\binom{7}{2}$
C) $P(7,2)$
D) $\frac{P(7,2)}{P(7,1)} 7$!

Answer: B) $\binom{7}{1}+\binom{7}{2}=28$.

Summary

Summary

\Rightarrow A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
\downarrow Number of sequences: n^{k}.

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Number of permutations: $P(n, k)=\frac{n!}{(n-k)!}$.
- A combination is obtained by selecting k elements from a group of n possible elements without replacement, such that order does not matter.
- Number of combinations: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.

