Lecture 20 - More Combinatorics, Conditional Probability

DSC 40A, Fall 2021 @ UC San Diego
Mahdi Soleymani, with help from many others

Agenda

- A few more applications of combinatorics.
- Partitions and the law of total probability.

More combinatorics

Another example

Question 2, Part 1: We have 12 pets, 5 dogs and 7 cats. In how many ways can we select 4 pets?

$$
\binom{12}{4}=\# \text { Combinations }
$$

Another example
Question 2, Part 2: We have 12 pets, 5 dogs and 7 cats. In how many ways can we select 4 pets such that we have...

1. 2 dogs and 2 cats?
2. 3 dogs and 1 cat?
3. At least 2 dogs?
(1) $\binom{5}{2} \times\binom{ 7}{2}=2$ dogs \& 2 cats
(2) $\binom{5}{3}\binom{7}{1}$
(3) at least $2 \log s=$

2 logs, 2 cats or $3 \log s, 1$ cat $O R$

$$
\binom{5}{4} \times\binom{ 7}{0^{7}}^{11}
$$

$<^{4} \log s$, No cat

Another example
Question 2, Part 3: We have 12 pets, 5 dogs and 7 cats. We randomly select 4 pets. What's the probability that we selected at least 2 dogs?

$$
P(A)=\frac{|A|}{|S|}=\frac{\binom{5}{2}\binom{7}{2}+\binom{5}{5}\binom{1}{1}+\binom{5}{4}}{\binom{12}{4}}
$$

Yet another example \square

$$
1+: 1 / 2
$$

$$
T: 1 / 2
$$

Question 3: Suppose we flip a fair coin 10 times. What is the probability that we see an equal number of heads and tails?

1. What is the probability that we see the specific sequence THTTHTHHTH?
2. What is the probability that we see an equal number of $\binom{10}{5} \frac{1}{2^{10}}$ heads and tails?
$1 \cdot \underbrace{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \cdots\left(\frac{1}{2}\right)}=\left(\frac{1}{2}\right)^{10}+$ prob. one
3. HT IH HT I T specific outcome $5 H \& 5 T$

One step further
Question 4: Suppose we flip a coin that is not fair, but instead has P (heads) $=\frac{1}{3}, 10$ times. Assume that each flip is independent.

1. What is the probability that we see the specific sequence THTTHTHHTH?
2. What is the probability that we see an equal number of heads and tails?

(2) $\underbrace{\binom{10}{5}}_{\text {such outcomes }} \times\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{5}$

Recap

\Rightarrow A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such that order matters.
\downarrow Number of sequences: n^{k}.

- A permutation is obtained by selecting k elements from a group of n possible elements without replacement, such that order matters.
- Number of permutations: $P(n, k)=\frac{n!}{(n-k)!}$.
- A combination is obtained by selecting k elements from a group of n possible elements without replacement, such that order does not matter.
- Number of combinations: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.

Example: deck of cards

- There are 52 cards in a standard deck.

Each card has 1 of 4 suits (Spades, Clubs, Hearts, Diamonds).

- Each card has 1 of 13 values (Ace, 2, 3, ..., 10, Jack, Queen, King).
\checkmark The order of cards in a hand does not matter.
- There are 6 practice problems here; we will likely not get through them all (but solutions will be posted with the annotated slides).
- As a bonus, we will look at a code demo of how to solve all of these questions in Python, using the itertools library.
- You're not required to know how this code works!

Example: deck of cards

1. How many 5 card hands are there in poker?
\# all cards $=52$
\# combinations of 5 out of $52=\binom{52}{5}$
2. How many 5 card hands are there where all cards are of the same suit?
\# Combinations of 5 cards out of 13 spades: $\binom{13}{5}$
The same is true for Clubs, Hearts \& Diamonds
Overall : $4 \times\binom{ 13}{5}$
3. How many 5 card hands are there that include a four-of-a-kind (values aaaab, e.g. four $3 s$ and a 5)?
There are 13 different four-of-a-kinds (AAAA, 2222)
The last card could be any OTHER card: \# other cards left $=4 \times 12$ Overall: $13 \times 4 \times 12$

Note that if the smallest is x, the other four cards are $x+1, x+2, x+3, x+4$. We can not choose the numbers for those! 4. How many 5 card hands are there that have a straight, ie. where all card values are consecutive? (e.g. 3, 4, 5, 6, 7, but the suits don't matter) 5 \# cases for the card with

How many 5 card hands are there that are a straight flush, ie. where all card values are consecutive and all cards are of the same suit? (e.g. 3, 4, 5, 6, 7, where all cards are diamonds)
This, we can not choose the colors of the next 4 cards either.

$$
4 \times 91111=4 \times 9
$$

OVERALL: $13 \times\binom{ 4}{2^{4}} \times\binom{ 12}{3} \times 4^{3}$
6. How many 5 card hands are there that include exactly one pair (values aabcd, e.g. two 3 s , or two 5 s , etc.)? \&
(1) How many ways we can pick a pair \# ways we
x \# ways we pick pick a number \uparrow a pair out of

$$
\times \quad{ }^{\text {a pair out of }} 4{ }^{2}\binom{4}{2}^{\text {suits }}=13 \times\binom{ 4}{2}
$$

(2) How many ways we can pick 3 other cards so that we have NO other pair?
\# ways we $\quad \chi$ possible suits \# ways we
pick 3 other numbers $\quad \times \begin{aligned} & \text { possible suits } \\ & \text { sequences for these }\end{aligned}$
out of 12 $\binom{12}{3} \times 4^{3} 3$ cards

The law of total probability

Example: getting to school

You conduct a survey where you ask students two questions.

1. How did you get to campus today? Walk, bike, or drive? (Assume these are the only options.)
2. Were you late?

	Late	Not Late
Walk	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

Late Not Late
Walk 0.060 .24

$$
\begin{aligned}
P(\text { late }) & =0.06+0.03 \\
& +0.36=0.45
\end{aligned}
$$

$\begin{array}{llll}\text { Bike } & 0.03 & 0.07\end{array}$
$\begin{array}{lll}\text { Drive } & 0.36 & 0.24\end{array}$

Discussion Question

What's the probability that a randomly selected person was late?
A) 0.24
B) 0.30
C) 0.45
D) 0.50
E) None of the above

To answer, go to menti . com and enter 47719448.

Example: getting to school

Late Not Late

$\begin{array}{lll}\text { Walk } & 0.06 & 0.24\end{array}$
$\begin{array}{lll}\text { Bike } & 0.03 & 0.07\end{array}$
Drive 0.360 .24

- Since everyone either walks, bikes, or drives to school, we have

and

\downarrow

$P($ Late $)=P($ Late \cap Walk $)+P($ Late \cap Bike $)+P($ Late \cap Drive $)$

Late Not Late

Walk $0.06 \quad 0.24$
$\begin{array}{lll}\text { Bike } & 0.03 & 0.07\end{array}$
$\begin{array}{lll}\text { Drive } & 0.36 & 0.24\end{array}$

Discussion Question

Suppose someone walked to school. What is the probability that they were late?
A) 0.06
B) 0.2
C) 0.25
D) 0.45
E) None of the above

To answer, go to menti . com and enter 47719448.

Example: getting to school
Late Not Late
$\begin{array}{lll}\text { Walk } & 0.06 & 0.24\end{array}$
$\begin{array}{lll}\text { Bike } & 0.03 & 0.07\end{array}$
$\begin{array}{lll}\text { Drive } & 0.36 & 0.24\end{array}$

- Since everyone either walks, bikes, or drives to school, we have

$$
P(\text { Late })=P(\text { Late } \cap \text { Walk })+P(\text { Late } \cap \text { Bike })+P(\text { Late } \cap \text { Drive })
$$

- Another way of expressing the same thing:

$$
\begin{aligned}
P(\text { Late }) & =P(\text { Walk }) P(\text { Late } \mid \text { Walk })+P(\text { Bike }) P(\text { Late } \mid \text { Bike }) \\
& +P(\text { Drive }) P(\text { Late } \mid \text { Drive })
\end{aligned}
$$

Partitions

\Rightarrow A set of events $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S if
$\Rightarrow P\left(E_{i} \cap E_{j}\right)=0$ for all unequal i, j.
$\Rightarrow P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{k}\right)=S$.
Equivalently, $P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots+P\left(E_{k}\right)=1$.
\Rightarrow In English, $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S if every outcome s in S is in exactly one event E_{i}.

Example partitions

- In getting to school, the events Walk, Bike, and Drive.
- In getting to school, the events Late and On-Time.
- In selecting an undergraduate student at random, the events Freshman, Sophomore, Junior, and Senior.
- In rolling a die, the events Even and Odd.
- In drawing a card from a standard deck of cards, the events Spades, Clubs, Hearts, and Diamonds.
- Special case: if A is an event and S is a sample space, A and \bar{A} partition S.

Partitions, visualized

The law of total probability

If A is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S, then

$$
\begin{aligned}
P(A) & =P\left(A \cap E_{1}\right)+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \cap E_{i}\right)
\end{aligned}
$$

The law of total probability, visualized

The law of total probability

If A is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S, then

$$
\begin{aligned}
P(A) & =P\left(A \cap E_{1}\right)+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \cap E_{i}\right)
\end{aligned}
$$

\Rightarrow Since $P\left(A \cap E_{i}\right)=P\left(E_{i}\right) \cdot P\left(A \mid E_{i}\right)$ by the multiplication rule, an equivalent formulation is

$$
\begin{aligned}
P(A) & =P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A \mid E_{2}\right)+\ldots+P\left(E_{k}\right) \cdot P\left(A \mid E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(E_{i}\right) \cdot P\left(A \mid E_{i}\right)
\end{aligned}
$$

Late Not Late

Walk	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

Discussion Question

Suppose someone is late to school. What is the probability that they walked? Choose the best answer.
A) Close to 0.05
B) Close to 0.15
C) Close to 0.3
D) Close to 0.4

To answer, go to menti . com and enter 47719448.

Summary

Summary

\Rightarrow A set of events $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S if each outcome in S is in exactly one E_{i}.

- The law of total probability states that if A is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S, then

$$
\begin{aligned}
P(A) & =P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A \mid E_{2}\right)+\ldots+P\left(E_{k}\right) \cdot P\left(A \mid E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(E_{i}\right) \cdot P\left(A \mid E_{i}\right)
\end{aligned}
$$

