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Agenda

▶ Bayes’ theorem.

▶ Independence.



The law of total probability
▶ If 𝐴 is an event and 𝐸1, 𝐸2, ..., 𝐸𝑘 is a partition of 𝑆, then

𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐸1) + 𝑃(𝐴 ∩ 𝐸2) + ... + 𝑃(𝐴 ∩ 𝐸𝑘)

=
𝑘
∑
𝑖=1
𝑃(𝐴 ∩ 𝐸𝑖)

▶ Since 𝑃(𝐴 ∩ 𝐸𝑖) = 𝑃(𝐸𝑖) ⋅ 𝑃(𝐴|𝐸𝑖) by the multiplication rule,
an equivalent formulation is

𝑃(𝐴) = 𝑃(𝐸1) ⋅ 𝑃(𝐴|𝐸1) + 𝑃(𝐸2) ⋅ 𝑃(𝐴|𝐸2) + ... + 𝑃(𝐸𝑘) ⋅ 𝑃(𝐴|𝐸𝑘)

=
𝑘
∑
𝑖=1
𝑃(𝐸𝑖) ⋅ 𝑃(𝐴|𝐸𝑖)



Late Not Late

Walk 0.06 0.24
Bike 0.03 0.07
Drive 0.36 0.24

Discussion Question

Suppose someone is late to school. What is the proba-
bility that they walked? Choose the best answer.
A) Close to 0.05
B) Close to 0.15
C) Close to 0.3
D) Close to 0.4
To answer, go to menti.com and enter 5686 2173 .

menti.com


Bayes’ theorem



Example: getting to school

▶ Now suppose you don’t have that entire table. Instead, all
you know is
▶ 𝑃(Late) = 0.45.
▶ 𝑃(Walk) = 0.3.
▶ 𝑃(Late|Walk) = 0.2.

▶ Can you still find 𝑃(Walk|Late)?



Bayes’ theorem
▶ Recall that the multiplication rule states that

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵|𝐴)

▶ It also states that

𝑃(𝐵 ∩ 𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)

▶ But since 𝐴 ∩ 𝐵 and 𝐵 ∩ 𝐴 are both “𝐴 and 𝐵”, we have that

𝑃(𝐴) ⋅ 𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)

▶ Re-arranging yields Bayes’ theorem:

𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)𝑃(𝐴)



Bayes’ theorem and the law of total probability
▶ Bayes’ theorem:

𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)𝑃(𝐴)

▶ Recall from earlier, for any sample space 𝑆, 𝐵 and �̄�
partition 𝑆. Using the law of total probability, we can
re-write 𝑃(𝐴) as

𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ �̄�) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵) + 𝑃(�̄�) ⋅ 𝑃(𝐴|�̄�)

▶ This means that we can re-write Bayes’ theorem as

𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)
𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵) + 𝑃(�̄�) ⋅ 𝑃(𝐴|�̄�)





Example: drug testing
A manufacturer claims that its drug test will detect steroid use
95% of the time. What the company does not tell you is that
15% of all steroid-free individuals also test positive (the false
positive rate). 10% of the Tour de France bike racers use
steroids. Your favorite cyclist just tested positive. What’s the
probability that they used steroids?





Example: blind burger taste test

▶ Your friend claims to be able to correctly guess a burger’s
restaurant after just one bite.

▶ The probability that she correctly identifies an In-n-Out
Burger is 0.55, a Shake Shack burger is 0.75, and a Five
Guys burger is 0.6.

▶ You buy 5 In-n-Out burgers, 4 Shake Shack burgers, and 1
Five Guys burger, choose one of the burgers randomly,
and give it to her.

▶ Question: Given that she guessed it correctly, what’s the
probability she ate a Shake Shack burger?





Discussion Question

Consider any two events 𝐴 and 𝐵. Which of the following
is equal to

𝑃(𝐵|𝐴) + 𝑃(�̄�|𝐴)

A) 𝑃(𝐴)
B) 1 − 𝑃(𝐵)
C) 𝑃(𝐵)
D) 𝑃(�̄�)
E) 1
To answer, go to menti.com and enter 5686 2173.

menti.com




Example: prosecutor’s fallacy

A bank was robbed yesterday by one person. Consider the
following facts about the crime:
▶ The person who robbed the bank wore Nikes.
▶ Of the 10,000 other people who came to the bank
yesterday, only 10 of them wore Nikes.

The prosecutor finds the prime suspect, and states that “given
this evidence, the chance that the prime suspect was not at
the crime scene is 1 in 1,000”.

1. What is wrong with this statement?

2. Find the probability that the prime suspect is guilty given
only the evidence in the exercise.





Independence



Updating probabilities
▶ Bayes’ theorem describes how to update the probability
of one event, given that another event has occurred.

𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)𝑃(𝐴)
▶ 𝑃(𝐵) can be thought of as the “prior” probability of 𝐵
occurring, before knowing anything about 𝐴.

▶ 𝑃(𝐵|𝐴) is sometimes called the “posterior”
probability of 𝐵 occurring, given that 𝐴 occurred.

▶ What if knowing that 𝐴 occurred doesn’t change the
probability that 𝐵 occurs? In other words, what if

𝑃(𝐵|𝐴) = 𝑃(𝐵)



Independent events

▶ 𝐴 and 𝐵 are independent events if one event occurring
does not affect the chance of the other event occurring.

𝑃(𝐵|𝐴) = 𝑃(𝐵) 𝑃(𝐴|𝐵) = 𝑃(𝐴)

▶ Otherwise, 𝐴 and 𝐵 are dependent events.

▶ Using Bayes’ theorem, we can show that if one of the
above statements is true, then so is the other.



Independent events
▶ Equivalent definition: 𝐴 and 𝐵 are independent events if

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵)

▶ To check if 𝐴 and 𝐵 are independent, use whichever is
easiest:
▶ 𝑃(𝐵|𝐴) = 𝑃(𝐵).

▶ 𝑃(𝐴|𝐵) = 𝑃(𝐴).

▶ 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵).



Mutual exclusivity and independence

Discussion Question

Suppose 𝐴 and 𝐵 are two events with non-zero probabil-
ity.
Is it possible for 𝐴 and 𝐵 to be both mutually exclusive
and independent?
A) Yes
B) No
C) It depends on 𝐴 and 𝐵
To answer, go to menti.com and enter 5686 2173.

menti.com


Example: Venn diagrams

For three events 𝐴, 𝐵, and 𝐶, we know that
▶ 𝐴 and 𝐶 are independent,
▶ 𝐵 and 𝐶 are independent,
▶ 𝐴 and 𝐵 are mutually exclusive,
▶ 𝑃(𝐴 ∪ 𝐶) = 2

3 , 𝑃(𝐵 ∪ 𝐶) =
3
4 , 𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) =

11
12 .

Find 𝑃(𝐴), 𝑃(𝐵), and 𝑃(𝐶).





Example: cards

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♣: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

▶ Suppose you draw two cards, one at a time.
▶ 𝐴 is the event that the first card is a heart.
▶ 𝐵 is the event that the second card is a club.

▶ If you draw the cards with replacement, are 𝐴 and 𝐵
independent?

▶ If you draw the cards without replacement, are 𝐴 and 𝐵
independent?



Example: cards

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♣: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

▶ Suppose you draw one card from a deck of 52.
▶ 𝐴 is the event that the card is a heart.
▶ 𝐵 is the event that the card is a face card (J, Q, K).

▶ Are 𝐴 and 𝐵 independent?





Assuming independence

▶ Sometimes we assume that events are independent to
make calculations easier.

▶ Real-world events are almost never exactly independent,
but they may be close.



Example: breakfast

1% of UCSD students are DSC majors. 25% of UCSD students
eat avocado toast for breakfast. Assuming that being a DSC
major and eating avocado toast for breakfast are
independent:

1. What percentage of DSC majors eat avocado toast for
breakfast?

2. What percentage of UCSD students are DSC majors who
eat avocado toast for breakfast?



Summary



Summary

▶ Bayes’ theorem states that

𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)𝑃(𝐴)

▶ We often re-write the denominator 𝑃(𝐴) in Bayes’ theorem
using the law of total probability.

▶ Two events 𝐴 and 𝐵 are independent when knowledge of
one event does not change the probability of the other
event.
▶ Equivalent conditions: 𝑃(𝐵|𝐴) = 𝑃(𝐵), 𝑃(𝐴|𝐵) = 𝑃(𝐴),
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵).


