Lecture 21 - The law of total probability and

 Bayes' Theorem

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Agenda

- Partitions and the law of total probability.
- Bayes' theorem.

The law of total probability

Example: getting to school

You conduct a survey where you ask students two questions.

1. How did you get to campus today? Walk, bike, or drive? (Assume these are the only options.)
2. Were you late?

Late Not Late

Walk	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

Check sum:

$$
0.06+0.24+0.03+0.07+0.36+0.24=1
$$

Example: getting to school

	Late	Not Late
Walk	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

- Since everyone either walks, bikes, or drives to school:
$P($ Late $)=P($ Late \cap Walk $)+P($ Late \cap Bike $)+P($ Late \cap Drive $)$

$$
=0.06+0.03+0.36=0.45=45 \%
$$

Example: getting to school

Late Not Late

$\begin{array}{lll}\text { Walk } & 0.06 & 0.24\end{array}$
$\begin{array}{lll}\text { Bike } & 0.03 & 0.07\end{array}$
$\begin{array}{lll}\text { Drive } & 0.36 & 0.24\end{array}$

Another way of expressing the same thing:

$$
\begin{aligned}
P(\text { Late }) & =P(\text { Walk }) P(\text { Late } \mid \text { Walk })+P(\text { Bike }) P(\text { Late } \mid \text { Bike }) \\
& +P(\text { Drive }) P(\text { Late } \mid \text { Drive }) \\
P(\text { Late }) & =0.3 \cdot \frac{0.06}{0.3}+0.1 \cdot \frac{0.03}{0.1}+0.6 \cdot \frac{0.36}{0.6} \\
& =0.06+0.03+0.36=0.45=45 \%
\end{aligned}
$$

Late Not Late

Walk $0.06 \quad 0.24$

$\begin{array}{lll}\text { Bike } & 0.03 & 0.07\end{array}$
$\begin{array}{lll}\text { Drive } & 0.36 & 0.24\end{array}$

Discussion Question

Suppose someone walked to school. What is the probability that they were late?
A) 0.06
B) 0.2
C) 0.25
D) 0.45
E) None of the above

Late Not Late

$\begin{array}{lll}\text { Walk } & 0.06 & 0.24\end{array}$

$\begin{array}{lll}\text { Bike } & 0.03 & 0.07\end{array}$
$\begin{array}{lll}\text { Drive } & 0.36 & 0.24\end{array}$

Discussion Question

Suppose someone walked to school. What is the probability that they were late?
A) 0.06
B) 0.2
C) 0.25
D) 0.45
E) None of the above

Answer: B) 0.2

$$
P(\text { Late } \mid \text { Walk })=\frac{P(\text { Late } \cap \text { Walk })}{P(\text { Walk })}=\frac{P(\text { Late, Walk })}{P(\text { Walk })}
$$

That is equal to:

$$
P(\text { Late } \mid \text { Walk })=\frac{0.06}{0.06+0.24}=\frac{0.06}{0.3}=\frac{1}{5}=20 \%
$$

Partitions

\Rightarrow A set of events $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S if
$\Rightarrow P\left(E_{i} \cap E_{j}\right)=0$ for all unequal i, j.
$\Rightarrow P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{k}\right)=S$.
Equivalently, $P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots+P\left(E_{k}\right)=1$.
\Rightarrow In English, $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S if every outcome s in S is in exactly one event E_{i}.

Example partitions

- In getting to school, the events Walk, Bike, and Drive.
- In getting to school, the events Late and On-Time.
- In selecting an undergraduate student at random, the events Freshman, Sophomore, Junior, and Senior.
- In rolling a die, the events Even and Odd.
- In drawing a card from a standard deck of cards, the events Spades, Clubs, Hearts, and Diamonds.
- Special case: if A is an event and S is a sample space, A and \bar{A} partition S.

Partitions, visualized

The law of total probability

If A is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S, then

$$
\begin{aligned}
P(A) & =P\left(A \cap E_{1}\right)+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \cap E_{i}\right)
\end{aligned}
$$

The law of total probability, visualized

The law of total probability

\Rightarrow If A is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S, then

$$
\begin{aligned}
P(A) & =P\left(A \cap E_{1}\right)+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \cap E_{i}\right)
\end{aligned}
$$

\Rightarrow Since $P\left(A \cap E_{i}\right)=P\left(E_{i}\right) \cdot P\left(A \mid E_{i}\right)$ by the multiplication rule, an equivalent formulation is

$$
\begin{aligned}
P(A) & =P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A \mid E_{2}\right)+\ldots+P\left(E_{k}\right) \cdot P\left(A \mid E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(E_{i}\right) \cdot P\left(A \mid E_{i}\right)
\end{aligned}
$$

Late Not Late

Walk $0.06 \quad 0.24$

$\begin{array}{lll}\text { Bike } & 0.03 & 0.07\end{array}$
Drive 0.360 .24

Discussion Question

Suppose someone is late to school. What is the probability that they walked? Choose the best answer.
A) Close to 0.05
B) Close to 0.15
C) Close to 0.3
D) Close to 0.4

Late Not Late

Walk	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

Discussion Question

Suppose someone is late to school. What is the probability that they walked? Choose the best answer.
A) Close to 0.05
B) Close to 0.15
C) Close to 0.3
D) Close to 0.4

Answer: B

$$
P(\text { Walk } \mid \text { Late })=\frac{P(\text { Walk, Late })}{P(\text { Late })}
$$

That is equivalent to:

$$
P(\text { Walk } \mid \text { Late })=\frac{P(\text { Walk, Late })}{P(\text { Walk, Late })+P(\text { Bike, Late })+P(\text { Drive, Late })}
$$

The result is:

$$
P(\text { Walk } \mid \text { Late })=\frac{0.06}{0.06+0.03+0.36}=\frac{0.06}{0.45} \approx 13 \%
$$

Bayes' theorem

Example: getting to school

- Now suppose you don't have that entire table. Instead, all you know is
$-P($ Late $)=0.45$.
$\Rightarrow P($ Walk $)=0.3$.
- $P($ Late \mid Walk $)=0.2$.
- Can you still find P (Walk|Late)?

Example: getting to school

- Now suppose you don't have that entire table. Instead, all you know is
$-P($ Late $)=0.45$.
$\Rightarrow P($ Walk $)=0.3$.
- $P($ Late \mid Walk $)=0.2$.
- Can you still find P (Walk|Late)?

Yes, because we know:
$P($ Walk, Late $)=P($ Walk \mid Late $) \cdot P($ Late $)=P($ Late \mid Walk $) \cdot P($ Walk $)$

Example: getting to school

- Now suppose you don't have that entire table. Instead, all you know is
- $P($ Late $)=0.45$.
$\Rightarrow P($ Walk $)=0.3$.
- $P($ Late \mid Walk $)=0.2$.
- Can you still find P (Walk|Late)?

Yes, because we know:
$P($ Walk, Late $)=P($ Walk \mid Late $) \cdot P($ Late $)=P($ Late \mid Walk $) \cdot P($ Walk $)$
That leads to:

Example: getting to school

- Now suppose you don't have that entire table. Instead, all you know is

$$
\begin{aligned}
& =P(\text { Late })=0.45 . \\
& P(\text { Walk })=0.3 \\
& P(\text { Late } \mid \text { Walk })=0.2
\end{aligned}
$$

- Can you still find P (Walk|Late)?

Yes, because we know:

$$
P(\text { Walk, Late })=P(\text { Walk } \mid \text { Late }) \cdot P(\text { Late })=P(\text { Late } \mid \text { Walk }) \cdot P(\text { Walk })
$$

That leads to:

$$
P(\text { Walk } \mid \text { Late })=\frac{P(\text { Late } \mid \text { Walk }) \cdot P(\text { Walk })}{P(\text { Late })}=\frac{0.2 \cdot 0.3}{0.45}=\frac{2}{15}
$$

Bayes' theorem

- Recall that the multiplication rule states that

$$
P(A \cap B)=P(A) \cdot P(B \mid A)
$$

- It also states that

$$
P(B \cap A)=P(B) \cdot P(A \mid B)
$$

- But since $A \cap B$ and $B \cap A$ are both " A and B ", we have that

$$
P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)
$$

- Re-arranging yields Bayes' theorem:

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(A)}
$$

Bayes' theorem and the law of total probability

- Bayes' theorem:

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(A)}
$$

- Recall from earlier, for any sample space S, B and \bar{B} partition S. Using the law of total probability, we can re-write $P(A)$ as

$$
P(A)=P(A \cap B)+P(A \cap \bar{B})=P(B) \cdot P(A \mid B)+P(\bar{B}) \cdot P(A \mid \bar{B})
$$

- This means that we can re-write Bayes' theorem as

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(B) \cdot P(A \mid B)+P(\bar{B}) \cdot P(A \mid \bar{B})}
$$

Example: drug testing

A manufacturer claims that its drug test will detect steroid use 95% of the time. What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that they used steroids?

Summary:

P (positive|use) $=0.95$
$P($ positive \mid nouse $)=0.15$
$P($ use $)=0.1$
P (nouse) $=1-P($ use $)=0.9$
$P($ use \mid positive $)=$?

Solution:

$$
P(\text { use } \mid \text { positive })=\frac{P(\text { use, positive })}{P(\text { positive })}
$$

We have:
$P($ use, positive $)=P($ positive \mid use $) \cdot P($ use $)=0.95 \cdot 0.1=0.095$

Summary:

$P($ positive|use $)=0.95$
$P($ positive \mid nouse $)=0.15$
$P($ use $)=0.1$
P (nouse) $=1-P($ use $)=0.9$
$P($ use \mid positive $)=$?

Solution:

$$
P(\text { use } \mid \text { positive })=\frac{P(\text { use }, \text { positive })}{P(\text { positive })}
$$

We have:
$P($ use, positive $)=P($ positive \mid use $) \cdot P($ use $)=0.95 \cdot 0.1=0.095$
$P($ nouse, positive $)=P($ positive \mid nouse $) \cdot P($ nouse $)=0.15 \cdot 0.9=$ 0.135

Summary:
P (positive|use) $=0.95$
P (positive \mid nouse $)=0.15$
$P($ use $)=0.1$
P (nouse) $=1-P($ use $)=0.9$
$P($ use \mid positive $)=$?

Solution:

$$
P(\text { use } \mid \text { positive })=\frac{P(\text { use, positive })}{P(\text { positive })}
$$

We have:
P (use, positive) $=P$ (positive|use) $\cdot P($ use $)=0.95 \cdot 0.1=0.095$
$P($ nouse, positive $)=P($ positive \mid nouse $) \cdot P($ nouse $)=0.15 \cdot 0.9=$ 0.135
$P($ positive $)=P($ use, positive $)+P($ nouse, positive $)=$
$0.095+0.135=0.23$
$P($ use \mid positive $)=0.095 / 0.23 \approx 41.3 \%$

Example: blind burger taste test

- Your friend claims to be able to correctly guess a burger's restaurant after just one bite.
- The probability that she correctly identifies an In-n-Out Burger is 0.55, a Shake Shack burger is 0.75 , and a Five Guys burger is 0.6.
- You buy 5 In-n-Out burgers, 4 Shake Shack burgers, and 1 Five Guys burger, choose one of the burgers randomly, and give it to her.
- Question: Given that she guessed it correctly, what's the probability she ate a Shake Shack burger?

Notations:

C = correct guess
I = In-n-Out
S = Shake Shack
F = Five Guys

Summary:

$P(C \mid I)=0.55$
$P(C \mid S)=0.75$
$P(C \mid F)=0.6$
$P(I)=0.5$
$P(S)=0.4$
$P(F)=0.1$
$P(S \mid C)=$?

We have:

$$
P(C)=P(C, I)+P(C, S)+P(C, F)
$$

That equals to:

$$
\begin{aligned}
& P(C)=P(C \mid I) P(I)+P(C \mid S) P(S)+P(C \mid F) P(F)= \\
& =0.55 \times 0.5+0.75 \times 0.4+0.6 \times 0.1=0.635
\end{aligned}
$$

in which $P(C, S)=0.75 \times 0.4=0.3$. Finally, we get:

$$
P(S \mid C)=\frac{P(C, S)}{P(C)}=\frac{0.3}{0.635} \approx 47.24 \%
$$

Discussion Question

Consider any two events A and B. Which of the following is equal to

$$
P(B \mid A)+P(\bar{B} \mid A)
$$

A) $P(A)$
B) $1-P(B)$
C) $P(B)$
D) $P(\bar{B})$
E) 1

Discussion Question

Consider any two events A and B. Which of the following is equal to

$$
P(B \mid A)+P(\bar{B} \mid A)
$$

A) $P(A)$
B) $1-P(B)$
C) $P(B)$
D) $P(\bar{B})$
E) 1

Answer: E) 1

We have:

$$
P(B \mid A)+P(\bar{B} \mid A)=\frac{P(B, A)}{P(A)}+\frac{P(\bar{B}, A)}{P(A)}
$$

That equals to:

$$
\frac{P(B, A)+P(\bar{B}, A)}{P(A)}=\frac{P(A)}{P(A)}=1
$$

Summary

Summary

- A set of events $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S if each outcome in S is in exactly one E_{i}.
- The law of total probability states that if A is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of S, then

$$
\begin{aligned}
P(A) & =P\left(E_{1}\right) \cdot P\left(A \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(A \mid E_{2}\right)+\ldots+P\left(E_{k}\right) \cdot P\left(A \mid E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(E_{i}\right) \cdot P\left(A \mid E_{i}\right)
\end{aligned}
$$

- Bayes' theorem states that

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(A)}
$$

- We often re-write the denominator $P(A)$ in Bayes' theorem using the law of total probability.

