Lecture 22 - Independence and Classification

DSC 40A, Fall 2022 @ UC San Diego

Dr. Truong Son Hy, with help from many others

Agenda

- Independence.
- Conditional independence.
- Classification

Review: Partition

- A set of events E₁, E₂, ..., E_k is a **partition** of S if each outcome in S is in exactly one E_i.
- The law of total probability states that if A is an event and $E_1, E_2, ..., E_k$ is a **partition** of S, then

$$P(A) = P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2) + \dots + P(E_k) \cdot P(A|E_k)$$
$$= \sum_{i=1}^{k} P(E_i) \cdot P(A|E_i)$$

Review: Bayes' theorem

Bayes' theorem states that

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

We often re-write the denominator P(A) in Bayes' theorem using the law of total probability:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{\sum_{i=1}^{k} P(E_i) \cdot P(A|E_i)}$$

Independence

Updating probabilities

Bayes' theorem describes how to update the probability of one event, given that another event has occurred.

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

- P(B) can be thought of as the "prior" probability of B occurring, before knowing anything about A.
- P(B|A) is sometimes called the "posterior" probability of B occurring, given that A occurred.
- What if knowing that A occurred doesn't change the probability that B occurs? In other words, what if

P(B|A) = P(B)

Independent events

A and B are independent events if one event occurring does not affect the chance of the other event occurring.

$$P(B|A) = P(B)$$
 $P(A|B) = P(A)$

- Otherwise, A and B are dependent events.
- Using Bayes' theorem, we can show that if one of the above statements is true, then so is the other.

Proof

Suppose P(B|A) = P(B), given Bayes' theorem, we have:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)} = P(B),$$

that leads to:

$$\frac{P(A|B)}{P(A)} = 1 \Leftrightarrow P(A|B) = P(A).$$

Proof

Suppose P(B|A) = P(B), given Bayes' theorem, we have:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)} = P(B),$$

that leads to:

$$\frac{P(A|B)}{P(A)} = 1 \Leftrightarrow P(A|B) = P(A).$$

Suppose P(A|B) = P(A), given Bayes' theorem, we have:

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)} = P(A),$$

that leads to:

$$\frac{P(B|A)}{P(B)} = 1 \Leftrightarrow P(B|A) = P(B).$$

Independent events

Equivalent definition: A and B are independent events if

 $P(A \cap B) = P(A) \cdot P(B)$

- To check if A and B are independent, use whichever is easiest:
 - $\blacktriangleright P(B|A) = P(B).$

$$\blacktriangleright P(A|B) = P(A).$$

▶
$$P(A \cap B) = P(A) \cdot P(B)$$
.

Mutual exclusivity and independence

Discussion Question

Suppose *A* and *B* are two events with <u>non-zero</u> probability.

Is it possible for A and B to be both **mutually exclusive** and **independent**?

- A) Yes
- B) No
- C) It depends on A and B

Mutual exclusivity and independence

Discussion Question

Suppose A and B are two events with <u>non-zero</u> probability.

Is it possible for A and B to be both **mutually exclusive** and **independent**?

- A) Yes
- B) No
- C) It depends on A and B

Answer: B) No. Why?

Mutual exclusivity and independence

When two events (call them A and B) are **mutually exclusive**, it is impossible for them to happen together:

 $P(A \cap B) = 0$

When two events are independent:

 $P(A \cap B) = P(A) \cdot P(B)$

Thus, if they are both **mutually exclusive** and **independent** then at least one of them must have zero probability.

For three events A, B, and C, we know that

- A and C are independent,
- B and C are independent,
- A and B are mutually exclusive,

▶
$$P(A \cup C) = \frac{2}{3}$$
, $P(B \cup C) = \frac{3}{4}$, $P(A \cup B \cup C) = \frac{11}{12}$.

Find *P*(*A*), *P*(*B*), and *P*(*C*).

Venn diagram:

Sets A and B:

$$|A\cup B|=|A|+|B|-|A\cap B|$$

Events A and B:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Sets A, B, and C:

 $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Events A, B and C:

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$

A and C are independent:

 $P(A \cap C) = P(A) \cdot P(C)$

B and C are independent:

 $P(B \cap C) = P(B) \cdot P(C)$

A and B are mutually exclusive:

 $P(A \cap B) = 0 \Rightarrow P(A \cap B \cap C) = 0$

 $P(A \cup C) = 2/3:$

 $P(A) + P(C) - P(A \cap C) = P(A) + P(C) - P(A) \cdot P(C) = \frac{2}{3}$

 $P(B \cup C) = 3/4:$

 $P(B) + P(C) - P(B \cap C) = P(B) + P(C) - P(B) \cdot P(C) = \frac{3}{4}$

 $P(A \cup B \cup C) = 11/12$:

 $P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C) = \frac{11}{12}$

Because $P(A \cap B) = P(A \cap B \cap C) = 0$, we have:

 $P(A) + P(B) + P(C) - P(A \cap C) - P(B \cap C) = \frac{11}{12}$

We re-arrange the terms a bit:

$$(P(A) + P(C) - P(A \cap C)) + (P(B) + P(C) - P(B \cap C)) - P(C) = \frac{11}{12}$$

We get:

Thus:

$$P(A \cup C) + P(B \cup C) - P(C) = \frac{2}{3} + \frac{3}{4} - P(C) = \frac{11}{12}$$
$$P(C) = \frac{1}{2}$$

Furthermore:

$$P(A) + P(C) - P(A) \cdot P(C) = \frac{1}{2}P(A) + \frac{1}{2} = \frac{2}{3} \Rightarrow P(A) = \frac{1}{3}$$
$$P(B) + P(C) - P(B) \cdot P(C) = \frac{1}{2}P(B) + \frac{1}{2} = \frac{3}{4} \Rightarrow P(B) = \frac{1}{2}$$

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Suppose you draw two cards, one at a time.

- A is the event that the first card is a heart.
- B is the event that the second card is a club.
- If you draw the cards with replacement, are A and B independent?

2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Suppose you draw two cards, one at a time.

- A is the event that the first card is a heart.
- B is the event that the second card is a club.
- ▶ If you draw the cards **with** replacement, are *A* and *B* independent? Yes. Because $P(B|A) = P(B) = \frac{1}{4}$.
- If you draw the cards without replacement, are A and B independent?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Suppose you draw two cards, one at a time.

- A is the event that the first card is a heart.
- B is the event that the second card is a club.
- ▶ If you draw the cards **with** replacement, are A and B independent? Yes. Because $P(B|A) = P(B) = \frac{1}{4}$.
- ▶ If you draw the cards **without** replacement, are A and B independent? No. Because $P(B|A) = \frac{13}{51} \neq P(B) = \frac{1}{4}$.

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Suppose you draw one card from a deck of 52.

A is the event that the card is a heart.

B is the event that the card is a face card (J, Q, K).

Are A and B independent?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Suppose you draw one card from a deck of 52.

A is the event that the card is a heart.

B is the event that the card is a face card (J, Q, K).

Are A and B independent? Yes. Because:

$$P(A) = \frac{13}{52} = \frac{1}{4}$$
$$P(B) = \frac{12}{52} = \frac{3}{13}$$
$$P(A \cap B) = \frac{3}{52} = \frac{1}{4} \cdot \frac{3}{13} = P(A) \cdot P(B)$$

Assuming independence

- Sometimes we assume that events are independent to make calculations easier.
- Real-world events are almost never exactly independent, but they may be close.

Example: breakfast

1% of UCSD students are DSC majors. 25% of UCSD students eat avocado toast for breakfast. Assuming that being a DSC major and eating avocado toast for breakfast are independent:

1. What percentage of DSC majors eat avocado toast for breakfast?

Example: breakfast

1% of UCSD students are DSC majors. 25% of UCSD students eat avocado toast for breakfast. Assuming that being a DSC major and eating avocado toast for breakfast are independent:

- 1. What percentage of DSC majors eat avocado toast for breakfast? 25%
- 2. What percentage of UCSD students are DSC majors who eat avocado toast for breakfast?

Example: breakfast

1% of UCSD students are DSC majors. 25% of UCSD students eat avocado toast for breakfast. Assuming that being a DSC major and eating avocado toast for breakfast are independent:

- 1. What percentage of DSC majors eat avocado toast for breakfast? 25%
- 2. What percentage of UCSD students are DSC majors who eat avocado toast for breakfast? 0.25%

Conditional independence

Conditional independence

- Sometimes, events that are dependent become independent, upon learning some new information.
- Or, events that are independent can become dependent, given additional information.

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

- Your dog ate the King of Clubs. Suppose you draw one card from a deck of 51.
 - A is the event that the card is a heart.
 - B is the event that the card is a face card (J, Q, K).
- Are A and B independent?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

- Your dog ate the King of Clubs. Suppose you draw one card from a deck of 51.
 - A is the event that the card is a heart.
 - B is the event that the card is a face card (J, Q, K).
- Are A and B independent? No. Because:

$$P(A) = \frac{13}{51}$$
$$P(B) = \frac{11}{51}$$
$$P(A \cap B) = \frac{3}{51} \neq P(A) \cdot P(B) = \frac{13 \cdot 11}{51^2}$$

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

- Your dog ate the King of Clubs. Suppose you draw one card from a deck of 51.
 - A is the event that the card is a heart.
 - B is the event that the card is a face card (J, Q, K).
- Suppose you learn that the card is red. Are A and B independent given this new information?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

- Your dog ate the King of Clubs. Suppose you draw one card from a deck of 51.
 - A is the event that the card is a heart.
 - B is the event that the card is a face card (J, Q, K).
- Suppose you learn that the card is red. Are A and B independent given this new information? Yes. Why?

Conditional independence

Recall that A and B are independent if

 $P(A \cap B) = P(A) \cdot P(B)$

A and B are conditionally independent given C if

 $P((A \cap B)|C) = P(A|C) \cdot P(B|C)$

Given that C occurs, this says that A and B are independent of one another.

Assuming conditional independence

- Sometimes we assume that events are conditionally independent to make calculations easier.
- Real-world events are almost never exactly conditionally independent, but they may be close.

Example: Harry Potter and TikTok

Suppose that 50% of UCSD students like Harry Potter and 80% of UCSD students use TikTok. What is the probability that a random UCSD student likes Harry Potter and uses TikTok, assuming that these events are conditionally independent given that a person is a UCSD student?

Example: Harry Potter and TikTok

Suppose that 50% of UCSD students like Harry Potter and 80% of UCSD students use TikTok. What is the probability that a random UCSD student likes Harry Potter and uses TikTok, assuming that these events are conditionally independent given that a person is a UCSD student?

40%

Independence vs. conditional independence

- ▶ Is it reasonable to assume conditional independence of
 - liking Harry Potter
 - using TikTok

given that a person is a UCSD student?

Is it reasonable to assume independence of these events in general, among all people?

Discussion Question

Which assumptions do you think are reasonable?

- A) Both
- B) Conditional independence only
- C) Independence (in general) only
- D) Neither

Independence vs. conditional independence

- ▶ Is it reasonable to assume conditional independence of
 - liking Harry Potter
 - using TikTok

given that a person is a UCSD student?

Is it reasonable to assume independence of these events in general, among all people?

Discussion Question

Which assumptions do you think are reasonable?

- A) Both
- B) Conditional independence only
- C) Independence (in general) only
- D) Neither

Answer: B) Conditional independence only.

Independence vs. conditional independence

In general, there is **no relationship** between independence and conditional independence. All of these are possibilities, given three events *A*, *B*, and *C*.

- A and B are independent, and are conditionally independent given C.
- A and B are independent, and are conditionally dependent given C.
- ► A and B are dependent, and are conditionally independent given C.
- ► A and B are dependent, and are conditionally dependent given C.

- Consider a sample space S = {1, 2, 3, 4, 5, 6} where all outcomes are equally likely.
- ▶ For each scenario, specify events *A*, *B*, and *C* that satisfy the given conditions. (e.g. *A* = {2, 5, 6})
- Choose events that are neither impossible nor certain, i.e. 0 < P(A), P(B), P(C) < 1.</p>

Scenario 1: A and B are not independent. A and B are conditionally independent given C.

Scenario 1: A and B are not independent. A and B are conditionally independent given C.

 $P(A \cap B) \neq P(A) \cdot P(B)$

 $P(A \cap B|C) = P(A|C) \cdot P(B|C)$

Let's aim to get P(A|C) = 1/2, P(B|C) = 1/2 and $P(A \cap B|C) = 1/4$. For example:

$$A|C = \{1, 2\}, \quad B|C = \{2, 3\}, \quad A \cap B|C = \{2\}$$

and C is condition so that the sample is less than or equal to 4. We can set $A = \{1, 2, 5\}$ and $B = \{2, 3, 6\}$. Obviously:

$$P(A \cap B) = P(2) = \frac{1}{6}$$

that is not equal to

$$P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

- Consider a sample space S = {1, 2, 3, 4, 5, 6} where all outcomes are equally likely.
- ► For each scenario, specify events *A*, *B*, and *C* that satisfy the given conditions. (e.g. *A* = {2, 5, 6})
- Choose events that are neither impossible nor certain, i.e. 0 < P(A), P(B), P(C) < 1.</p>

Scenario 2: A and B are not independent. A and B are not conditionally independent given C.

Scenario 2: A and B are not independent. A and B are not conditionally independent given C.

We can set $A = \{1, 2, 5\}$ and $B = \{2, 3, 6\}$. For the condition, let change C to the sample is less than or equal to 3. We get:

$$P(A|C) = \frac{2}{3},$$

$$P(B|C) = \frac{2}{3},$$
and:
$$P(A \cap B|C) = \frac{1}{3} \neq P(A|C) \cdot P(B|C) = \frac{4}{9}.$$

- Consider a sample space S = {1, 2, 3, 4, 5, 6} where all outcomes are equally likely.
- ▶ For each scenario, specify events *A*, *B*, and *C* that satisfy the given conditions. (e.g. *A* = {2, 5, 6})
- Choose events that are neither impossible nor certain, i.e. 0 < P(A), P(B), P(C) < 1.</p>

Scenario 3: A and B **are** independent. A and B **are** conditionally independent given C.

Scenario 3: A and B **are** independent. A and B **are** conditionally independent given C.

Let's aim to construct so that:

$$P(A) = \frac{1}{2}, \quad P(B) = \frac{1}{3}, \quad P(A \cap B) = \frac{1}{6},$$
$$P(A|C) = \frac{1}{2}, \quad P(B|C) = \frac{1}{2}, \quad P(A \cap B|C) = \frac{1}{4}.$$

For example:

A = {1, 2, 5}, B = {2, 4},

and C is the condition so that the sample is less than or equal to 4.

- Consider a sample space S = {1, 2, 3, 4, 5, 6} where all outcomes are equally likely.
- ▶ For each scenario, specify events *A*, *B*, and *C* that satisfy the given conditions. (e.g. *A* = {2, 5, 6})
- Choose events that are neither impossible nor certain, i.e. 0 < P(A), P(B), P(C) < 1.</p>

Scenario 4: A and B **are** independent. A and B **are not** conditionally independent given C.

Scenario 4: A and B **are** independent. A and B **are not** conditionally independent given C.

We can keep $A = \{1, 2, 5\}$ and C = the sample is less than or equal to 4 as in Scenario 3. But we change $B = \{2, 6\}$. We have:

$$P(A \cap B) = \frac{1}{6} = P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{3},$$

but

$$P(A \cap B|C) = \frac{1}{4} \neq P(A|C) \cdot P(B|C) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}.$$

Review

- Two events A and B are independent when knowledge of one event does not change the probability of the other event.
 - Equivalent conditions: P(B|A) = P(B), P(A|B) = P(A), $P(A \cap B) = P(A) \cdot P(B)$.
- Two events A and B are conditionally independent if they are independent given knowledge of a third event, C.
 Condition: P((A ∩ B)|C) = P(A|C) · P(B|C).
- In general, there is no relationship between independence and conditional independence.
- Next: Using Bayes' theorem and conditional independence to solve the classification problem in machine learning.

Classification

Taxonomy of machine learning

Classification problems

- Like with regression, we're interested in mkaing predictions based on data we've already collected (called training data).
- The difference is that the response variable is categorical.
- Categories are called classes.
- Example classification problems:
 - Deciding whether a patient has kidney disease.
 - Identifying handwritten digits.
 - Determining whether an avocado is ripe.
 - Predicting whether credit card activity is fraudulent.

Example: avocados

You have a green-black avocado, and want to know if it is ripe.

color	ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

Question: Based on this data, would you predict that your avocado is ripe or unripe?

Example: avocados

You have a green-black avocado, and want to know if it is ripe. Based on this data, would you predict that your avocado is ripe or unripe?

color	ripeness
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	unripe
purple-black	ripe
bright green	unripe
green-black	ripe
purple-black	ripe
green-black	ripe
green-black	unripe
purple-black	ripe

Strategy: Calculate two probabilities:

P(ripe|green-black)

P(unripe|green-black)

Then, predict the class with a **larger** probability.