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Announcements
▶ Look at the readings linked on the course website!

▶ We will have the Thanksgiving break, so there is no class
on Friday next week.

▶ The final is coming, so there will be a review session.



Agenda

▶ Review of conditional independence.

▶ Classification.

▶ Classification and conditional independence.

▶ Naive Bayes.



Example: constructing events
▶ Consider a sample space 𝑆 = {1, 2, 3, 4, 5, 6} where all
outcomes are equally likely.

▶ For each scenario, specify events 𝐴, 𝐵, and 𝐶 that satisfy
the given conditions. (e.g. 𝐴 = {2, 5, 6})

▶ Choose events that are neither impossible nor certain, i.e.
0 < 𝑃(𝐴), 𝑃(𝐵), 𝑃(𝐶) < 1.

Scenario 3: 𝐴 and 𝐵 are independent. 𝐴 and 𝐵 are
conditionally independent given 𝐶.



Scenario 3: 𝐴 and 𝐵 are independent. 𝐴 and 𝐵 are
conditionally independent given 𝐶.

Let’s aim to construct so that:

𝑃(𝐴) = 1
2, 𝑃(𝐵) = 1

3, 𝑃(𝐴 ∩ 𝐵) = 1
6,

𝑃(𝐴|𝐶) = 1
2, 𝑃(𝐵|𝐶) = 1

2, 𝑃(𝐴 ∩ 𝐵|𝐶) = 1
4.

For example:
𝐴 = {1, 2, 5},
𝐵 = {2, 4},

and 𝐶 is the condition so that the sample is less than or equal
to 4.
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Scenario 4: 𝐴 and 𝐵 are independent. 𝐴 and 𝐵 are not
conditionally independent given 𝐶.

We can keep 𝐴 = {1, 2, 5} and 𝐶 = the sample is less than or
equal to 4 as in Scenario 3. But we change 𝐵 = {2, 6}. We have:

𝑃(𝐴 ∩ 𝐵) = 1
6 = 𝑃(𝐴) ⋅ 𝑃(𝐵) = 1

2 ⋅ 13,

but
𝑃(𝐴 ∩ 𝐵|𝐶) = 1

4 ≠ 𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶) = 1
2 ⋅ 14 = 1

8.



Review
▶ Two events 𝐴 and 𝐵 are independent when knowledge of
one event does not change the probability of the other
event.
▶ Equivalent conditions: 𝑃(𝐵|𝐴) = 𝑃(𝐵), 𝑃(𝐴|𝐵) = 𝑃(𝐴),

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵).

▶ Two events 𝐴 and 𝐵 are conditionally independent if they
are independent given knowledge of a third event, 𝐶.
▶ Condition: 𝑃((𝐴 ∩ 𝐵)|𝐶) = 𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶).

▶ In general, there is no relationship between
independence and conditional independence.

▶ Next: Using Bayes’ theorem and conditional
independence to solve the classification problem in
machine learning.



Classification



Taxonomy of machine learning

1
1taken from Joseph Gonzalez @ UC Berkeley



Classification problems

▶ Like with regression, we’re interested in mkaing
predictions based on data we’ve already collected (called
training data).

▶ The difference is that the response variable is categorical.

▶ Categories are called classes.

▶ Example classification problems:
▶ Deciding whether a patient has kidney disease.
▶ Identifying handwritten digits.
▶ Determining whether an avocado is ripe.
▶ Predicting whether credit card activity is fraudulent.



Example: avocados

You have a green-black avocado, and want to know if it is ripe.

color ripeness
bright green unripe
green-black ripe
purple-black ripe
green-black unripe
purple-black ripe
bright green unripe
green-black ripe
purple-black ripe
green-black ripe
green-black unripe
purple-black ripe

Question: Based on this data,
would you predict that your
avocado is ripe or unripe?



Example: avocados
You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

color ripeness
bright green unripe
green-black ripe
purple-black ripe
green-black unripe
purple-black ripe
bright green unripe
green-black ripe
purple-black ripe
green-black ripe
green-black unripe
purple-black ripe

Strategy: Calculate two
probabilities:

𝑃(ripe|green-black)

𝑃(unripe|green-black)
Then, predict the class with a
larger probability.
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Example: avocados
You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

color ripeness
bright green unripe
green-black ripe
purple-black ripe
green-black unripe
purple-black ripe
bright green unripe
green-black ripe
purple-black ripe
green-black ripe
green-black unripe
purple-black ripe

Strategy: Calculate two
probabilities:

𝑃(ripe|green-black)

𝑃(unripe|green-black)
Then, predict the class with a
larger probability.



Estimating probabilities

▶ We would like to determine 𝑃(ripe|green-black) and
𝑃(unripe|green-black) for all avocados in the universe.

▶ All we have is a single dataset, which is a sample of all
avocados in the universe.

▶ We can estimate these probabilities by using sample
proportions.

𝑃(ripe|green-black) ≈ # ripe green-black avocados in sample
# green-black avocados in sample

▶ Per the law of large numbers in DSC 10, larger samples
lead to more reliable estimates of population parameters.



Example: avocados
You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

color ripeness
bright green unripe
green-black ripe
purple-black ripe
green-black unripe
purple-black ripe
bright green unripe
green-black ripe
purple-black ripe
green-black ripe
green-black unripe
purple-black ripe

𝑃(ripe|green-black) = ?

𝑃(unripe|green-black) = ?



Example: avocados
By definition:

𝑃(ripe|green-black) = 𝑃(ripe,green-black)
𝑃(green-black)

There are 3 out of 11 rows that are (green-black, ripe). Thus,

𝑃(ripe,green-black) = 3/11.

On the another, by the Law of total probability, we have:

𝑃(green-black) = 𝑃(green-black, ripe) + 𝑃(green-black,unripe).

We count that there are 2 out of 11 rows that are (green-black,
unripe). Thus,

𝑃(unripe,green-black) = 2/11.



Example: avocados

Therefore:
𝑃(green-black) = 5/11.

We have:
𝑃(ripe|green-black) = 3

5 = 60%

and:
𝑃(unripe|green-black) = 2

5 = 40%.



Bayes’ theorem for classification
▶ Suppose that 𝐴 is the event that an avocado has certain
features, and 𝐵 is the event that an avocado belongs to a
certain class. Then, by Bayes’ theorem:

𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)
𝑃(𝐴)

▶ More generally:

𝑃(class|features) = 𝑃(class) ⋅ 𝑃(features|class)
𝑃(features)

▶ What’s the point?
▶ Usually, it’s not possible to estimate 𝑃(class|features)
directly from the data we have.

▶ Instead, we have to estimate 𝑃(class),
𝑃(features|class), and 𝑃(features) separately.



Example: avocados
You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

color ripeness
bright green unripe
green-black ripe
purple-black ripe
green-black unripe
purple-black ripe
bright green unripe
green-black ripe
purple-black ripe
green-black ripe
green-black unripe
purple-black ripe

𝑃(class|features) = 𝑃(class)⋅𝑃(features|class)
𝑃(features)



Example: avocados
You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

color ripeness
bright green unripe
green-black ripe
purple-black ripe
green-black unripe
purple-black ripe
bright green unripe
green-black ripe
purple-black ripe
green-black ripe
green-black unripe
purple-black ripe

𝑃(class|features) = 𝑃(class)⋅𝑃(features|class)
𝑃(features)

Shortcut: Both probabilities have the
same denominator. The larger one is
the one with the larger numerator.

𝑃(ripe|green-black)

𝑃(unripe|green-black)



Example: avocados

We can ignore the denominator 𝑃(features):

𝑃(class|features) ∝ 𝑃(class) ⋅ 𝑃(features|class),

where ∝ means “proportional to”. We have:

𝑃(ripe|green-black) ∝ 𝑃(ripe) ⋅ 𝑃(green-black|ripe)

𝑃(unripe|green-black) ∝ 𝑃(unripe) ⋅ 𝑃(green-black|unripe)



Example: avocados

First, we can do the approximation for the priors:
▶ There are 7 out of 11 rows having “ripe” labels:

𝑃(ripe) = 7/11.

▶ There are 4 out of 11 rows having “unripe” labels:
𝑃(unripe) = 4/11.

Second, we can do the approximation for the posteriors:
▶ Out of 7 rows with “ripe” labels, only 3 rows have
“green-black”: 𝑃(green-black|ripe) = 3/7.

▶ Out of 4 rows with “unripe“ labels, only 2 rows have
“green-black”: 𝑃(green-black|unripe) = 2/4 = 1/2.



Example: avocados

First, we can do the approximation for the priors:
▶ There are 7 out of 11 rows having “ripe” labels:

𝑃(ripe) = 7/11.

▶ There are 4 out of 11 rows having “unripe” labels:
𝑃(unripe) = 4/11.

Second, we can do the approximation for the posteriors:
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Example: avocados

We have:

𝑃(ripe|green-black) ∝ 𝑃(ripe) ⋅ 𝑃(green-black|ripe) = 7
11 ⋅ 37 = 3

11

𝑃(unripe|green-black) ∝ 𝑃(unripe)⋅𝑃(green-black|unripe) = 4
11⋅

1
2 = 2

11

We got a vector (3/11, 2/11), that does not form a probability
distribution yet. In general, given a non-negative vector
⃗𝑥 = (𝑥1, .., 𝑥𝑛) ∈ ℝ𝑛, we can create a probability distribution

𝑝⃗ = (𝑝1, .., 𝑝𝑛) by dividing ⃗𝑥 by its sum of all elements:

𝑝⃗ = ⃗𝑥
‖ ⃗𝑥‖1

,

where 𝑝𝑖 = 𝑥𝑖/∑
𝑛
𝑗=1 𝑥𝑗.
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Example: avocados

After normalization, we get (60%, 40%). Actually, for
prediction, we do not even need to calculate the probability
exactly. In this case, 3/11 > 2/11, thus:

𝑃(ripe|green-black) > 𝑃(unripe|green-black)

and we can conclude that given green-black color, it is likely
that the avocado is ripe (i.e. the prediction is ripe).



Classification and conditional independence



Example: avocados, but with more features
color softness variety ripeness
bright green firm Zutano unripe
green-black medium Hass ripe
purple-black firm Hass ripe
green-black medium Hass unripe
purple-black soft Hass ripe
bright green firm Zutano unripe
green-black soft Zutano ripe
purple-black soft Hass ripe
green-black soft Zutano ripe
green-black firm Hass unripe
purple-black medium Hass ripe

You have a firm green-black Zutano avocado. Based on this
data, would you predict that your avocado is ripe or unripe?



Example: avocados, but with more features
color softness variety ripeness
bright green firm Zutano unripe
green-black medium Hass ripe
purple-black firm Hass ripe
green-black medium Hass unripe
purple-black soft Hass ripe
bright green firm Zutano unripe
green-black soft Zutano ripe
purple-black soft Hass ripe
green-black soft Zutano ripe
green-black firm Hass unripe
purple-black medium Hass ripe

You have a firm green-black Zutano avocado. Based on this
data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate 𝑃(ripe|features) and 𝑃(unripe|features)
and choose the class with the larger probability.

𝑃(ripe|firm, green-black, Zutano)
𝑃(unripe|firm, green-black, Zutano)



Example: avocados, but with more features

color softness variety ripeness
bright green firm Zutano unripe
green-black medium Hass ripe
purple-black firm Hass ripe
green-black medium Hass unripe
purple-black soft Hass ripe
bright green firm Zutano unripe
green-black soft Zutano ripe
purple-black soft Hass ripe
green-black soft Zutano ripe
green-black firm Hass unripe
purple-black medium Hass ripe

You have a firm green-black Zutano avocado. Based on this
data, would you predict that your avocado is ripe or unripe?

Issue: We have not seen a firm green-black Zutano avocado
before.

This means that 𝑃(ripe|firm, green-black, Zutano) and
𝑃(unripe|firm, green-black, Zutano) are undefined.



A simplifying assumption

▶ We want to find 𝑃(ripe|firm, green-black, Zutano), but
there are no firm green-black Zutano avocados in our
dataset.

▶ Bayes’ theorem tells us this probability is equal to

𝑃(ripe|firm, green-black, Zutano) = 𝑃(ripe) ⋅ 𝑃(firm, green-black, Zutano|ripe)
𝑃(firm, green-black, Zutano)

▶ Key idea: Assume that features are conditionally
independent given a class (e.g. ripe).

𝑃(firm, green-black, Zutano|ripe) = 𝑃(firm|ripe)⋅𝑃(green-black|ripe)⋅𝑃(Zutano|ripe)



A simplifying assumption

𝑃(ripe|firm, green-black, Zutano) ∝ 𝑃(ripe)⋅𝑃(firm, green-black, Zutano|ripe)
𝑃(firm, green-black, Zutano|ripe) = 𝑃(firm|ripe)⋅𝑃(green-black|ripe)⋅𝑃(Zutano|ripe)

Among 7 rows with label “ripe”:
▶ Only 1 row with “firm”: 𝑃(firm|ripe) = 1/7.

▶ 3 rows with “green-black”: 𝑃(green-black|ripe) = 3/7.

▶ 2 rows with “Zutano”: 𝑃(Zutano|ripe) = 2/7.
Thus:

𝑃(firm, green-black, Zutano|ripe) = 6
73 .

Therefore:

𝑃(ripe|firm, green-black, Zutano) ∝ 7
11 ⋅ 6

73 = 6
539.



A simplifying assumption
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Example: avocados, but with more features

color softness variety ripeness
bright green firm Zutano unripe
green-black medium Hass ripe
purple-black firm Hass ripe
green-black medium Hass unripe
purple-black soft Hass ripe
bright green firm Zutano unripe
green-black soft Zutano ripe
purple-black soft Hass ripe
green-black soft Zutano ripe
green-black firm Hass unripe
purple-black medium Hass ripe

You have a firm green-black Zutano avocado. Based on this
data, would you predict that your avocado is ripe or unripe?

𝑃(unripe|firm, green-black, Zutano) = 𝑃(unripe) ⋅ 𝑃(firm, green-black, Zutano|unripe)
𝑃(firm, green-black, Zutano)

Let’s calculate for “unripe” label!



More calculation

Among 4 rows with label “unripe”:
▶ 3 rows with “firm”: 𝑃(firm|unripe) = 3/4.

▶ 2 rows with “green-black”:
𝑃(green-black|unripe) = 2/4 = 1/2.

▶ 2 rows with “Zutano”: 𝑃(Zutano|unripe) = 2/4 = 1/2.
Thus:

𝑃(firm, green-black, Zutano|unripe) = 12
43 .

Therefore:

𝑃(unripe|firm, green-black, Zutano) ∝ 4
11 ⋅ 1243 = 3

44.



Conclusion

▶ The numerator of 𝑃(ripe|firm, green-black, Zutano) is 6
539 .

▶ The numerator of 𝑃(unripe|firm, green-black, Zutano) is
3
44 .
▶ Both probabilities have the same denominator,

𝑃(firm, green-black, Zutano).

▶ Since we’re just interested in seeing which one is
larger, we can ignore the denominator and compare
numerators.

▶ Since the numerator for unripe is larger than the
numerator for ripe, we predict that our avocado is unripe.



Naive Bayes



Naive Bayes classifier
▶ We want to predict a class, given certain features.

▶ Using Bayes’ theorem, we write

𝑃(class|features) = 𝑃(class) ⋅ 𝑃(features|class)
𝑃(features)

▶ For each class, we compute the numerator using the naive
assumption of conditional independence of features
given the class.

▶ We estimate each term in the numerator based on the
training data.

▶ We predict the class with the largest numerator.
▶ Works if we have multiple classes, too!


