Lecture 23 - Naive Bayes
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Announcements

Look at the readings linked on the course website!

We will have the Thanksgiving break, so there is no class
on Friday next week.

The final is coming, so there will be a review session.



Agenda

Review of conditional independence.
Classification.
Classification and conditional independence.

Naive Bayes.



Example: constructing events

Consider a sample space S = {1, 2, 3,4, 5, 6} where all
outcomes are equally likely.
For each scenario, specify events A, B, and C that satisfy
the given conditions. (e.g. A ={2,5,6})
Choose events that are neither impossible nor certain, i.e.
0 < P(A), P(B), P(C) < 1.
Scenario 3: A and B are independent. A and B are
conditionally independent given C.



Scenario 3: A and B are independent. A and B are
conditionally independent given C.

Let’s aim to construct so that:

21 1 -1
P(A)—z, P(B)_31 P(AnB) 6;
1 1 1
PAIC)= 5, P(BIC)=5, P(ANBIC)= .
For example:
A:{11215}1
B ={2,4},

and C is the condition so that the sample is less than or equal
1o 4.



Example: constructing events

Consider a sample space S = {1, 2, 3,4, 5, 6} where all
outcomes are equally likely.
For each scenario, specify events A, B, and C that satisfy
the given conditions. (e.g. A ={2,5,6})
Choose events that are neither impossible nor certain, i.e.
0 < P(A), P(B), P(C) < 1.
Scenario 4: A and B are independent. A and B are not
conditionally independent given C.



Scenario 4: A and B are independent. A and B are not
conditionally independent given C.

We can keep A ={1,2,5}and C = the sample is less than or
equal to 4 as in Scenario 3. But we change B = {2, 6}. We have:

1 11
P(AnB)‘g‘P(A)'P(B)-E‘g,
but
PANB|C) = 1 # PAIC)- P(BIC) = + - L = 1.
4 2'47°8



Review

Two events A and B are independent when knowledge of
one event does not change the probability of the other
event.
Equivalent conditions: P(B|A) = P(B), P(A|B) = P(A),
P(A n B) = P(A) - P(B).

Two events A and B are conditionally independent if they
are independent given knowledge of a third event, C.

Condition: P((An B)|C) = P(A|C) - P(B|C).

In general, there is no relationship between
independence and conditional independence.

Next: Using Bayes’ theorem and conditional
independence to solve the classification problem in
machine learning.



Classification



Taxonomy of machine learning
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Classification problems

Like with regression, we're interested in mkaing
predictions based on data we've already collected (called
training data).

The difference is that the response variable is categorical.
Categories are called classes.

Example classification problems:
Deciding whether a patient has kidney disease.
Identifying handwritten digits.
Determining whether an avocado is ripe.
Predicting whether credit card activity is fraudulent.



Example: avocados

You have a green-black avocado, and want to know if it is ripe.

color ripeness . )
bright green | unripe Question: Based on this data,

would you predict that your
avocado is ripe or unripe?

green-black | ripe
purple-black | ripe
green-black | unripe
purple-black | ripe
bright green | unripe
green-black | ripe
purple-black | ripe
green-black | ripe
green-black | unripe
purple-black | ripe




Example: avocados

You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

color ripeness Strategy: Calculate two
bright green | unripe probabilities:
green-black | ripe

purple-black | ripe P(ripelgreen-black)

green-black | unripe
purple-black | ripe
bright green | unripe Then, predict the class with a
green-black | ripe larger probability.
purple-black | ripe
green-black | ripe
green-black | unripe
purple-black | ripe

P(unripe|green-black)




Example: avocados

You have a green-black avocado, and want to know if it is ripe.

color ripeness . )
bright green | unripe Question: Based on this data,

would you predict that your
avocado is ripe or unripe?

green-black | ripe
purple-black | ripe
green-black | unripe
purple-black | ripe
bright green | unripe
green-black | ripe
purple-black | ripe
green-black | ripe
green-black | unripe
purple-black | ripe




Example: avocados

You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

color ripeness Strategy: Calculate two
bright green | unripe probabilities:
green-black | ripe

purple-black | ripe P(ripelgreen-black)

green-black | unripe
purple-black | ripe
bright green | unripe Then, predict the class with a
green-black | ripe larger probability.
purple-black | ripe
green-black | ripe
green-black | unripe
purple-black | ripe

P(unripe|green-black)




Estimating probabilities

We would like to determine P(ripe|green-black) and
P(unripe|green-black) for all avocados in the universe.

All we have is a single dataset, which is a sample of all
avocados in the universe.

We can estimate these probabilities by using sample
proportions.

# ripe green-black avocados in sample
# green-black avocados in sample

P(ripel|green-black) =

Per the law of large numbers in DSC 10, larger samples
lead to more reliable estimates of population parameters.



Example: avocados

You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

color ripeness
bright green | unripe P(ripelgreen-black) = ?
green-black | ripe
purple-black | ripe
green-black | unripe
purple-black | ripe
bright green | unripe P(unripe|green-black) = ?
green-black | ripe
purple-black | ripe
green-black | ripe
green-black | unripe
purple-black | ripe




Example: avocados
By definition:

P(ripe,green-black)

P(ripe|green-black) = P(green-black)

There are 3 out of 11 rows that are (green-black, ripe). Thus,
P(ripe,green-black) = 3/11.

On the another, by the Law of total probability, we have:

P(green-black) = P(green-black, ripe) + P(green-black, unripe).

We count that there are 2 out of 11 rows that are (green-black,
unripe). Thus,

P(unripe,green-black) = 2/11.



Example: avocados

Therefore:
P(green-black) = 5/11.
We have: 3
P(ripelgreen-black) = - 60%
and:

P(unripe|green-black) = % = 40%.



Bayes' theorem for classification

Suppose that A is the event that an avocado has certain
features, and B is the event that an avocado belongs to a
certain class. Then, by Bayes’ theorem:

P(B) - P(A|B)

P(BIA) = =50

More generally:

P(class) - P(features|class)

P(class|features) = P(features)

What's the point?
Usually, it's not possible to estimate P(class|features)
directly from the data we have.
Instead, we have to estimate P(class),
P(features|class), and P(features) separately.



Example: avocados

You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

color ripeness | p(class|features) = AeeiEiemLeslcass)
bright green | unripe

green-black | ripe
purple-black | ripe
green-black | unripe
purple-black | ripe
bright green | unripe
green-black | ripe
purple-black | ripe
green-black | ripe
green-black | unripe
purple-black | ripe




Example: avocados

You have a green-black avocado, and want to know if it is ripe.
Based on this data, would you predict that your avocado is
ripe or unripe?

(class)-P(features|class)

P(class|features) = £

color ripeness P(features)
bright green unripe Shortcut: Both probabilities have the
green-black | ripe same denominator. The larger one is
purple-black | ripe the one with the larger numerator.

green-black | unripe
purple-black | ripe
bright green | unripe
green-black | ripe
purple-black | ripe
green-black | ripe
green-black | unripe
purple-black | ripe

P(ripelgreen-black)

P(unripe|green-black)




Example: avocados

We can ignore the denominator P(features):
P(class|features) o P(class) - P(features|class),
where « means “proportional to”. We have:

P(ripelgreen-black) « P(ripe) - P(green-black]ripe)

P(unripe|green-black) o P(unripe) - P(green-black|unripe)



Example: avocados

First, we can do the approximation for the priors:

There are 7 out of 11 rows having “ripe” labels:
P(ripe) = 7/11.

There are 4 out of 11 rows having “unripe” labels:
P(unripe) = 4/11.



Example: avocados

First, we can do the approximation for the priors:

There are 7 out of 11 rows having “ripe” labels:
P(ripe) = 7/11.

There are 4 out of 11 rows having “unripe” labels:
P(unripe) = 4/11.
Second, we can do the approximation for the posteriors:

Out of 7 rows with “ripe” labels, only 3 rows have
“green-black”: P(green-black|ripe) =3/7.

Out of 4 rows with “unripe” labels, only 2 rows have
“green-black”: P(green-black|unripe) =2/4=1/2.



Example: avocados

We have:
7 3 _ 3
P(ripelgreen-black) « P(ripe) - P(green-black|ripe) = 77 1
. . . 4 1 2
P(unripelgreen-black) o« P(unripe)-P(green-black|unripe) = 113 = 11



Example: avocados

We have:
7 3 _ 3
P(ripelgreen-black) « P(ripe) - P(green-black|ripe) = 77511
. . . 4 1 2
P(unripelgreen-black) o« P(unripe)-P(green-black|unripe) = 173 =1

We got a vector (3/11,2/11), that does not form a probability
distribution yet. In general, given a non-negative vector

X = (x;,.,X,) € R", we can create a probability distribution

p = (p,,..p,) by dividing X by its sum of all elements:

X
- ?
X1

p =

wherep,-x/Zj1 ;.



Example: avocados

After normalization, we get (60%, 40%). Actually, for
prediction, we do not even need to calculate the probability
exactly. In this case, 3/11 > 2/11, thus:

P(ripe|green-black) > P(unripe|green-black)

and we can conclude that given green-black color, it is likely
that the avocado is ripe (i.e. the prediction is ripe).



Classification and conditional independence



Example: avocados, but with more features

color softness variety ripeness
bright green firm Zutano unripe
green-black medium Hass ripe
purple-black firm Hass ripe
green-black medium Hass unripe
purple-black soft Hass ripe
bright green firm Zutano unripe
green-black soft Zutano ripe
purple-black soft Hass ripe
green-black soft Zutano ripe
green-black firm Hass unripe
purple-black medium Hass ripe

You have a firm green-black Zutano avocado. Based on this
data, would you predict that your avocado is ripe or unripe?



Example: avocados, but with more features

color softness variety ripeness
bright green firm Zutano unripe
green-black medium Hass ripe
purple-black firm Hass ripe
green-black medium Hass unripe
purple-black soft Hass ripe
bright green firm Zutano unripe
green-black soft Zutano ripe
purple-black soft Hass ripe
green-black soft Zutano ripe
green-black firm Hass unripe
purple-black medium Hass ripe

You have a firm green-black Zutano avocado. Based on this
data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate P(ripelfeatures) and P(unripel|features)
and choose the class with the larger probability.

P(ripelfirm, green-black, Zutano)

P(unripelfirm, green-black, Zutano)



Example: avocados, but with more features

color softness variety ripeness
bright green firm Zutano unripe
green-black medium Hass ripe
purple-black firm Hass ripe
green-black medium Hass unripe
purple-black soft Hass ripe
bright green firm Zutano unripe
green-black soft Zutano ripe
purple-black soft Hass ripe
green-black soft Zutano ripe
green-black firm Hass unripe
purple-black medium Hass ripe

You have a firm green-black Zutano avocado. Based on this
data, would you predict that your avocado is ripe or unripe?

Issue: We have not seen a firm green-black Zutano avocado

before.

This means that P(ripelfirm, green-black, Zutano) and
P(unripelfirm, green-black, Zutano) are undefined.



A simplifying assumption

We want to find P(ripelfirm, green-black, Zutano), but

there are no firm green-black Zutano avocados in our
dataset.

Bayes’ theorem tells us this probability is equal to

(ripe) - P(firm, green-black, Zutano|ripe)
P(firm, green-black, Zutano)

Key idea: Assume that features are conditionally
independent given a class (e.g. ripe).

P
P(ripelfirm, green-black, Zutano) =

P(firm, green-black, Zutano|ripe) = P(firm|ripe)-P(green-black]|ripe)-P(Zutano|ripe)



A simplifying assumption

P(ripelfirm, green-black, Zutano) o P(ripe)-P(firm, green-black, Zutano|ripe)
P(firm, green-black, Zutano|ripe) = P(firm|ripe)-P(green-black]|ripe)-P(Zutano|ripe)



A simplifying assumption

P(ripelfirm, green-black, Zutano) o P(ripe)-P(firm, green-black, Zutano|ripe)
P(firm, green-black, Zutano|ripe) = P(firm|ripe)-P(green-black]|ripe)-P(Zutano|ripe)
Among 7 rows with label “ripe”:

Only 1 row with “firm”: P(firm|ripe) = 1/7.

3 rows with “green-black”: P(green-black|ripe) = 3/7.

2 rows with “Zutano”: P(Zutano|ripe) = 2/7.

Thus: ]
P(firm, green-black, Zutano|ripe) = RS
Therefore:
6 _ 6

. 7
P fi -black, Zut — = .
(ripelfirm, green-black, Zutano) « 1175 = 539



Example: avocados, but with more features

color softness variety ripeness
bright green firm Zutano unripe
green-black medium Hass ripe
purple-black firm Hass ripe
green-black medium Hass unripe
purple-black soft Hass ripe
bright green firm Zutano unripe
green-black soft Zutano ripe
purple-black soft Hass ripe
green-black soft Zutano ripe
green-black firm Hass unripe
purple-black medium Hass ripe

You have a firm green-black Zutano avocado. Based on this
data, would you predict that your avocado is ripe or unripe?

P(unripe) - P(firm, green-black, Zutano|unripe)
P(firm, green-black, Zutano)

P(unripelfirm, green-black, Zutano) =

Let’s calculate for “unripe” label!



More calculation

Among 4 rows with label “unripe”™
3 rows with “firm”: P(firm|unripe) = 3/4.

2 rows with “green-black”:
P(green-black|unripe) =2/4 =1/2.

2 rows with “Zutano”: P(Zutano|unripe) =2/4 =1/2.
Thus:

P(firm, green-black, Zutano|unripe) = 1—?

Therefore:

P(unripelfirm, green-black, Zutano) « 4 12_3

11 43 44



Conclusion

The numerator of P(ripelfirm, green-black, Zutano) is %

The numerator of P(unripelfirm, green-black, Zutano) is
3
E.
Both probabilities have the same denominator,
P(firm, green-black, Zutano).

Since we're just interested in seeing which one is
larger, we can ignore the denominator and compare
numerators.

Since the numerator for unripe is larger than the
numerator for ripe, we predict that our avocado is unripe.



Naive Bayes



Naive Bayes classifier

We want to predict a class, given certain features.

Using Bayes’ theorem, we write

P(class) - P(features|class)
P(features)

P(class|features) =

For each class, we compute the numerator using the naive
assumption of conditional independence of features
given the class.

We estimate each term in the numerator based on the
training data.

We predict the class with the largest numerator.
Works if we have multiple classes, too!



