Lecture 24 - More Naive Bayes

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Announcements

- Look at the readings linked on the course website!
- We will have the Thanksgiving break, so there is no class on Friday this week.
- The final is coming, so there will be a review session.

Agenda

Naive Bayes.

Text classification.

- Practical demo.

Naive Bayes

Naive Bayes classifier

- We want to predict a class, given certain features.
- Using Bayes' theorem, we write

$$
P(\text { class } \mid \text { features })=\frac{P(\text { class }) \cdot P(\text { features } \mid \text { class })}{P(\text { features })}
$$

- For each class, we compute the numerator using the naive assumption of conditional independence of features given the class.
- We estimate each term in the numerator based on the training data.
- We predict the class with the largest numerator.
- Works if we have multiple classes, too!

(1) na.ive

/ni'ēv/
adjective
(of a person or action) showing a lack of experience, wisdom, or judgment.
"the rather naive young man had been totally misled"

- (of a person) natural and unaffected; innocent.
"Andy had a sweet, naive look when he smiled"
Similar: innocent (unsophisticated) artless) (ingenuous) (inexperienced) \checkmark
- of or denoting art produced in a straightforward style that deliberately rejects sophisticated artistic techniques and has a bold directness resembling a child's work, typically in bright colors with little or no perspective.

Example: comic characters

ALIGN	SEX	COMPANY
Bad	Male	Marvel
Neutral	Male	Marvel
Good	Male	Marvel
Bad	Male	DC
Good	Female	Marvel
Bad	Male	DC
Good	Male	DC
Bad	Male	Marvel
Good	Female	Marvel
Bad	Female	Marvel

My favorite character is a male Marvel character. Using Naive Bayes, would we predict that my favorite character is bad, good, or neutral?

ALIGN	SEX	COMPANY
Bad	Male	Marvel
Neutral	Male	Marvel
Good	Male	Marvel
Bad	Male	DC
Good	Female	Marvel
Bad	Male	DC
Good	Male	DC
Bad	Male	Marvel
Good	Female	Marvel
Bad	Female	Marvel

$P($ bad \mid male, Marvel $) \propto P($ bad $) \cdot P($ male, Marvel \mid bad $)$
$P($ male, Marvel \mid bad $)=P($ male \mid bad $) \cdot P($ Marvel \mid bad $)$

$$
\begin{gathered}
P(\text { bad })=\frac{5}{10} \\
P(\text { male } \mid \text { bad })=\frac{4}{5} \\
P(\text { Marvel } \mid \text { bad })=\frac{2}{5} \\
P(\text { bad } \mid \text { male, Marvel }) \propto \frac{5 \cdot 4 \cdot 2}{10 \cdot 5 \cdot 5}=\frac{4}{25}
\end{gathered}
$$

ALIGN	SEX	COMPANY
Bad	Male	Marvel
Neutral	Male	Marvel
Good	Male	Marvel
Bad	Male	DC
Good	Female	Marvel
Bad	Male	DC
Good	Male	DC
Bad	Male	Marvel
Good	Female	Marvel
Bad	Female	Marvel

$P($ good \mid male, Marvel $) \propto P($ good $) \cdot P($ male, Marvel \mid good $)$ $P($ male, Marvel \mid good $)=P($ male \mid good $) \cdot P($ Marvel \mid good $)$

$$
\begin{gathered}
P(\text { good })=\frac{4}{10} \\
P(\text { malelgood })=\frac{2}{4} \\
P(\text { Marvel } \mid \text { good })=\frac{3}{4}
\end{gathered}
$$

$P($ good \mid male, Marvel $) \propto \frac{4 \cdot 2 \cdot 3}{10 \cdot 4 \cdot 4}=\frac{3}{20}$

ALIGN	SEX	COMPANY
Bad	Male	Marvel
Neutral	Male	Marvel
Good	Male	Marvel
Bad	Male	DC
Good	Female	Marvel
Bad	Male	DC
Good	Male	DC
Bad	Male	Marvel
Good	Female	Marvel
Bad	Female	Marvel

P (neutral|male, Marvel) $\propto P($ neutral $) \cdot P($ male, Marvel \mid neutral $)$
$P($ male, Marvel \mid neutral $)=P($ male \mid neutral $) \cdot P($ Marvel \mid neutral $)$

$$
\begin{gathered}
P(\text { neutral })=\frac{1}{10} \\
P(\text { male } \mid \text { neutral })=\frac{1}{1}=1 \\
P(\text { Marvel } \mid \text { neutral })=\frac{1}{1}=1 \\
P(\text { neutral } \mid \text { male, Marvel }) \propto \frac{1}{10}
\end{gathered}
$$

Example: comic characters

ALIGN	SEX	COMPANY
Bad	Male	Marvel
Neutral	Male	Marvel
Good	Male	Marvel
Bad	Male	DC
Good	Female	Marvel
Bad	Male	DC
Good	Male	DC
Bad	Male	Marvel
Good	Female	Marvel
Bad	Female	Marvel

My other favorite character is a male Marvel character. Using Naive Bayes, would we predict that my favorite character is bad, good, or neutral? Bad! because $4 / 25>3 / 20>1 / 10$.

Example: comic characters

ALIGN	SEX	COMPANY
Bad	Male	Marvel
Neutral	Male	Marvel
Good	Male	Marvel
Bad	Male	DC
Good	Female	Marvel
Bad	Male	DC
Good	Male	DC
Bad	Male	Marvel
Good	Female	Marvel
Bad	Female	Marvel

My other favorite character is a female Marvel character. What is the probability that this character is neutral?

ALIGN	SEX	COMPANY
Bad	Male	Marvel
Neutral	Male	Marvel
Good	Male	Marvel
Bad	Male	DC
Good	Female	Marvel
Bad	Male	DC
Good	Male	DC
Bad	Male	Marvel
Good	Female	Marvel
Bad	Female	Marvel

$P($ neutral \mid female, Marvel $) \propto P($ neutral $) \cdot P($ female, Marvel \mid neutral $)$
$P($ female, Marvel|neutral $)=P($ female \mid neutral $) \cdot P($ (Marvel \mid neutral $)$

$$
P(\text { neutral })=\frac{1}{10}
$$

$P($ female \mid neutral $)=\frac{0}{1}=0$
$P($ Marvel \mid neutral $)=\frac{1}{1}=1$
$P($ neutrallfemale, Marvel $) \propto 0$

Uh oh...

- There are no neutral female characters in the data set.
- The estimate $P($ female \mid neutral $) ~ \approx \frac{\sharp \text { female neutral characters }}{\# \text { neutral characters }}$ is 0.
- The estimated numerator, $P($ neutral $) \cdot P($ female, Marvel \mid neutral $)=$ $P($ neutral $) \cdot P($ female \mid neutral $) \cdot P($ Marvel \mid neutral $)$, is also 0 .
- But just because there isn't a neutral female character in the data set, doesn't mean they don't exist!
- Idea: Adjust the numerators and denominators of our estimate so that they're never 0 .

Smoothing

> Without smoothing:

$$
\begin{aligned}
& P(\text { female } \text { neutral }) \approx \frac{\# \text { female neutral }}{\# \text { female neutral }+ \text { \# male neutral }} \\
& P(\text { male } \text { neutral }) \approx \frac{\# \text { male neutral }}{\# \text { female neutral }+\# \text { male neutral }}
\end{aligned}
$$

- With smoothing:

$$
\begin{aligned}
& P(\text { female } \mid \text { neutral }) \approx \frac{\# \text { female neutral }+1}{\# \text { female neutral }+1+\# \text { male neutral }+1} \\
& P(\text { male } \text { neutral }) \approx \frac{\# \text { male neutral }+1}{\# \text { female neutral }+1+\# \text { male neutral }+1}
\end{aligned}
$$

- When smoothing, we add 1 to the count of every group whenever we're estimating a probability.

ALIGN	SEX	COMPANY
Bad	Male	Marvel
Neutral	Male	Marvel
Good	Male	Marvel
Bad	Male	DC
Good	Female	Marvel
Bad	Male	DC
Good	Male	DC
Bad	Male	Marvel
Good	Female	Marvel
Bad	Female	Marvel

$P($ neutral|female, Marvel) $\propto P($ neutral $) \cdot P($ female, Marvel \mid neutral $)$ $P($ female, Marvel|neutral $)=P($ female \mid neutral $) \cdot P($ Marvel \mid neutral $)$

$$
\begin{gathered}
P(\text { neutral })=\frac{1}{10} \\
P(\text { female } \mid \text { neutral })=\frac{1}{3} \\
P(\text { Marvel } \mid \text { neutral })=\frac{2}{3}
\end{gathered}
$$

$P($ neutrallfemale, Marvel $) \propto \frac{1}{45}$

Summary: Naive Bayes classifier

- In classification, our goal is to predict a discrete category, called a class, given some features.
- We want to predict a class, given certain features.
- For each class, we compute the numerator using the naive assumption of conditional independence of features given the class.
- We estimate each term in the numerator based on the training data.
\Rightarrow We predict the class with the largest numerator.
- Works if we have multiple classes, too!

Summary: Naive Bayes classifier

- The Naive Bayes classifier works by estimating the numerator of P (class|features) for all possible classes.
- It uses Bayes' theorem:

$$
P(\text { class } \mid \text { features })=\frac{P(\text { class }) \cdot P(\text { features } \mid \text { class })}{P(\text { features })}
$$

- It also uses a simplifying assumption, that features are conditionally independent given a class:
$P($ features \mid class $)=P\left(\right.$ feature ${ }_{1} \mid$ class $) \cdot P\left(\right.$ feature $_{2} \mid$ class $) \cdot \ldots$

Text classification

Text classification

- Text classification problems include:
- Sentiment analysis (e.g. positive and negative customer reviews).
- Determining genre (news articles, blog posts, etc.).
- Spam filtering.
- Our goal: given the body of an email, determine whether it's spam or ham (not spam).

Shutterfly 11/3/21
Thank us later-snag an EXTRA 20\% OFF your holiday card an... Plus, claim your 4 freebies (today only)! > | View web version \uparrow ! Order cards and gifts now to avoid delays UP TO 50\% OFF...

Alumni Alliances

Univ. of Cal. Berkeley Alumni Club Invites Suraj from Halıcıoğl... Have you claimed your members-only access? Hi Suraj, You're Invited to Join Alumni Alliances, an invitation-only alumni club....

IRS.gov 11/1/21
Re: You are Eligible For a Tax Return on Nov 1, 06:01:52 pm c Third Round of Economic Impact Payments Status Available.

Question: How do we come up with features?

Features

Idea:

- Choose a dictionary of d words, e.g. "prince", "money", "free"...
- Represent each email with a feature vector \vec{x} :

$$
\vec{x}=\left[\begin{array}{c}
x^{(1)} \\
x^{(2)} \\
\ldots \\
x^{(d)}
\end{array}\right]
$$

where
$>x^{(i)}=1$ if word i is present in the email, and
$\Rightarrow x^{(i)}=0$ otherwise.
This is called the bag-of-words model.

Concrete example

- Dictionary: "prince", "money", "free", and "xxx".
- Dataset of 5 emails (red are spam, green are ham):
- "I am the prince of UCSD and I demand money."
- "Tapioca Express: redeem your free Thai Iced Tea!"
- "DSC 40A: free points if you fill out CAPEs!"
- "Click here to make a tax-free donation to the IRS."
- "Free COVID-19 tests at Prince Center."

Naive Bayes for spam classification

$$
P(\text { class } \mid \text { features })=\frac{P(\text { class }) \cdot P(\text { features } \mid \text { class })}{P(\text { features })}
$$

- To classify an email, we'll use Bayes' theorem to calculate the probability of it belonging to each class:
- P (spam | features).
$>P$ (ham | features).
- We'll predict the class with a larger probability.

Naive Bayes for spam classification

$$
P(\text { class } \mid \text { features })=\frac{P(\text { class }) \cdot P(\text { features } \mid \text { class })}{P(\text { features })}
$$

- Note that the formulas for P (spam | features) and P (ham | features) have the same denominator, P (features).
- Thus, we can find the larger probability just by comparing numerators:
$\Rightarrow P$ (spam) $\cdot P$ (features $\|$ spam).
> P (ham) $\cdot P$ (features \mid ham $)$.

Naive Bayes for spam classification

Discussion Question

We need to determine four quantities:

1. P (features | spam).
2. P (features | ham).
3. P (spam).
4. $P($ ham $)$.

Which of these probabilities should add to 1 ?
A) 1,2
B) 3,4
C) Both A and B
D) Neither A nor B

Naive Bayes for spam classification

Discussion Question

We need to determine four quantities:

1. P (features | spam).
2. P (features | ham).
3. P (spam).
4. $P($ ham $)$.

Which of these probabilities should add to 1 ?
A) 1,2
B) 3,4
C) Both A and B
D) Neither A nor B

Answer: B) $P($ spam $)+P($ ham $)=1$.

Estimating probabilities with training data

- To estimate P (spam), we compute

$$
P(\text { spam }) \approx \frac{\# \text { spam emails in training set }}{\# \text { emails in training set }}
$$

- To estimate P (ham), we compute

$$
P(\text { spam }) \approx \frac{\# \text { ham emails in training set }}{\# \text { emails in training set }}
$$

- What about P (features \mid spam $)$ and P (features | ham)?

Assumption of conditional independence

- Note that P (features \| spam) looks like

$$
P\left(x^{(1)}=0, x^{(2)}=1, \ldots, x^{(d)}=0 \mid \text { spam }\right)
$$

- Recall: the key assumption that the Naive Bayes classifier makes is that the features are conditionally independent given the class.
- This means we can estimate P (features \mid spam $)$ as

$$
\begin{aligned}
P\left(x^{(1)}\right. & \left.=0, x^{(2)}=1, \ldots, x^{(d)}=0 \mid \text { spam }\right) \\
=P\left(x^{(1)}\right. & =0 \mid \text { spam }) \cdot P\left(x^{(2)}=1 \mid \text { spam }\right) \cdot \ldots \cdot P\left(x^{(d)}=0 \mid \text { spam }\right)
\end{aligned}
$$

Concrete example

Dictionary: "prince", "money", "free", and "xxx". Dataset of 5 emails (red are spam, green are ham): "I am the prince of UCSD and I demand money." "Tapioca Express: redeem your free Thai Iced Tea!" "DSC 40A: free points if you fill out CAPEs!" "Click here to make a tax-free donation to the IRS." "Free COVID-19 tests at Prince Center."

	prince	money	free	xxx	Label
Sentence 1	1	1	0	0	spam
Sentence 2	0	0	1	0	ham
Sentence 3	0	0	1	0	ham
Sentence 4	0	0	1	0	spam
Sentence 5	1	0	1	0	ham

Concrete example

	prince	money	free	xxx	Label
Sentence 1	1	1	0	0	spam
Sentence 2	0	0	1	0	ham
Sentence 3	0	0	1	0	ham
Sentence 4	0	0	1	0	spam
Sentence 5	1	0	1	0	ham
$x^{(1)}=$ prince, $x^{(2)}=$ money, $x^{(3)}=$ free, $x^{(4)}=x x x$					

Prior:

$$
\begin{aligned}
& P(\text { spam })=\frac{2}{5} \\
& P(\text { ham })=\frac{3}{5}
\end{aligned}
$$

Concrete example

	prince	money	free	xxx	Label
Sentence 1	1	1	0	0	spam
Sentence 2	0	0	1	0	ham
Sentence 3	0	0	1	0	ham
Sentence 4	0	0	1	0	spam
Sentence 5	1	0	1	0	ham

Conditional probability on spam:

$$
P\left(x^{(1)}=0 \mid \text { spam }\right)=\frac{1}{2}, \quad P\left(x^{(1)}=1 \mid \text { spam }\right)=\frac{1}{2},
$$

Concrete example

	prince	money	free	xxx	Label
Sentence 1	1	1	0	0	spam
Sentence 2	0	0	1	0	ham
Sentence 3	0	0	1	0	ham
Sentence 4	0	0	1	0	spam
Sentence 5	1	0	1	0	ham

Conditional probability on spam:

$$
\begin{aligned}
& P\left(x^{(1)}=0 \mid \text { spam }\right)=\frac{1}{2}, \quad P\left(x^{(1)}=1 \mid \text { spam }\right)=\frac{1}{2}, \\
& P\left(x^{(2)}=0 \mid \text { spam }\right)=\frac{1}{2}, \quad P\left(x^{(2)}=1 \mid \text { spam }\right)=\frac{1}{2},
\end{aligned}
$$

Concrete example

	prince	money	free	xxx	Label
Sentence 1	1	1	0	0	spam
Sentence 2	0	0	1	0	ham
Sentence 3	0	0	1	0	ham
Sentence 4	0	0	1	0	spam
Sentence 5	1	0	1	0	ham

Conditional probability on spam:

$$
\begin{aligned}
& P\left(x^{(1)}=0 \mid \text { spam }\right)=\frac{1}{2}, \quad P\left(x^{(1)}=1 \mid \text { spam }\right)=\frac{1}{2}, \\
& P\left(x^{(2)}=0 \mid \text { spam }\right)=\frac{1}{2}, \quad P\left(x^{(2)}=1 \mid \text { spam }\right)=\frac{1}{2}, \\
& P\left(x^{(3)}=0 \mid \text { spam }\right)=\frac{1}{2}, \quad P\left(x^{(3)}=1 \mid \text { spam }\right)=\frac{1}{2},
\end{aligned}
$$

Concrete example

	prince	money	free	xxx	Label
Sentence 1	1	1	0	0	spam
Sentence 2	0	0	1	0	ham
Sentence 3	0	0	1	0	ham
Sentence 4	0	0	1	0	spam
Sentence 5	1	0	1	0	ham

Conditional probability on spam:

$$
\begin{aligned}
& P\left(x^{(1)}=0 \mid \text { spam }\right)=\frac{1}{2}, \quad P\left(x^{(1)}=1 \mid \text { spam }\right)=\frac{1}{2}, \\
& P\left(x^{(2)}=0 \mid \text { spam }\right)=\frac{1}{2}, \quad P\left(x^{(2)}=1 \mid \text { spam }\right)=\frac{1}{2}, \\
& P\left(x^{(3)}=0 \mid \text { spam }\right)=\frac{1}{2}, \quad P\left(x^{(3)}=1 \mid \text { spam }\right)=\frac{1}{2}, \\
& P\left(x^{(4)}=0 \mid \text { spam }\right)=1, \quad P\left(x^{(4)}=1 \mid \text { spam }\right)=0 .
\end{aligned}
$$

Concrete example

	prince	money	free	xxx	Label
Sentence 1	1	1	0	0	spam
Sentence 2	0	0	1	0	ham
Sentence 3	0	0	1	0	ham
Sentence 4	0	0	1	0	spam
Sentence 5	1	0	1	0	ham
$x^{(1)}=$ prince, $x^{(2)}=$ money, $x^{(3)}=$ free, $x^{(4)}=x x x$					

Conditional probability on ham:

$$
\begin{array}{ll}
P\left(x^{(1)}=0 \mid \text { ham }\right)=\frac{2}{3}, & P\left(x^{(1)}=1 \mid \text { ham }\right)=\frac{1}{3} \\
P\left(x^{(2)}=0 \mid \text { ham }\right)=1, & P\left(x^{(2)}=1 \mid \text { ham }\right)=0 \\
P\left(x^{(3)}=0 \mid \text { ham }\right)=0, & P\left(x^{(3)}=1 \mid \text { ham }\right)=1, \\
P\left(x^{(4)}=0 \mid \text { ham }\right)=1, & P\left(x^{(4)}=1 \mid \text { ham }\right)=0 .
\end{array}
$$

Concrete example

- New email to classify: "Download a free copy of the Prince of Persia."‘

Concrete example

- New email to classify: "Download a free copy of the Prince of Persia."'

prince	money	free	xxx
1	0	1	0

Concrete example

- New email to classify: "Download a free copy of the Prince of Persia."‘

prince	money	free	xxx
1	0	1	0

To compute the probability of the text being spam, we have: P (features|spam)
$=P\left(x^{(1)}=1 \mid\right.$ spam $) P\left(x^{(2)}=0 \mid\right.$ spam $) P\left(x^{(3)}=1 \mid\right.$ spam $) P\left(x^{(4)}=0 \mid\right.$ spam $)$
$=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1=\frac{1}{8}$

Concrete example

- New email to classify: "Download a free copy of the Prince of Persia."'

prince	money	free	xxx
1	0	1	0

To compute the probability of the text being spam, we have: P (features|spam)
$=P\left(x^{(1)}=1 \mid\right.$ spam $) P\left(x^{(2)}=0 \mid\right.$ spam $) P\left(x^{(3)}=1 \mid\right.$ spam $) P\left(x^{(4)}=0 \mid\right.$ spam $)$
$=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1=\frac{1}{8}$
Thus:
$P($ spam \mid features $) \propto P($ features \mid spam $) \cdot P($ spam $)=\frac{1}{8} \cdot \frac{2}{5}=\frac{1}{20}$

Concrete example

- New email to classify: "Download a free copy of the Prince of Persia."‘

prince	money	free	xxx
1	0	1	0

To compute the probability of the text being ham, we have: P (features|ham)
$=P\left(x^{(1)}=1 \mid\right.$ ham $) P\left(x^{(2)}=0 \mid\right.$ ham $) P\left(x^{(3)}=1 \mid\right.$ ham $) P\left(x^{(4)}=0 \mid\right.$ ham $)$
$=\frac{1}{3} \cdot 1 \cdot 1 \cdot 1=\frac{1}{3}$
Thus:
$P($ ham \mid features $) \propto P($ features \mid ham $) \cdot P($ ham $)=\frac{1}{3} \cdot \frac{3}{5}=\frac{1}{5}$

Concrete example

- New email to classify: "Download a free copy of the Prince of Persia."'

prince	money	free	xxx
1	0	1	0

Because

$$
P(\text { ham } \mid \text { features })=\frac{1}{5}>P(\text { spam } \mid \text { features })=\frac{1}{20},
$$

this sentence is classified as ham.

Uh oh...

What happens if we try to classify the email "xxx what's your price, prince"?

Uh oh...

- What happens if we try to classify the email "xxx what's your price, prince"?

prince	money	free	xxx
1	0	0	1

There is a keyword " $x x x$ " and the sentence is likely spam. But:

$$
P\left(x^{(4)}=1 \mid \text { spam }\right)=0
$$

Thus:

$$
P(\text { features } \mid \text { spam })=0
$$

Then, it will be classified as ham with absolute certainty.

Smoothing

- Without smoothing:

$$
P\left(x^{(i)}=1 \mid \text { spam }\right) \approx \frac{\text { \# spam containing word } i}{\# \text { spam containing word } i+\# \text { spam not containing word } i}
$$

- With smoothing:

$$
P\left(x^{(i)}=1 \mid \text { spam }\right) \approx \frac{(\# \text { spam containing word } i)+1}{(\# \text { spam containing word } i)+1+(\# \text { spam not containing word } i)+1}
$$

- When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability.
- Don't smooth the estimates of unconditional probabilities (e.g. $P($ spam)).

Concrete example with smoothing

	prince	money	free	xxx	Label
Sentence 1	1	1	0	0	spam
Sentence 2	0	0	1	0	ham
Sentence 3	0	0	1	0	ham
Sentence 4	0	0	1	0	spam
Sentence 5	1	0	1	0	ham
$x^{(1)}=$ prince, $x^{(2)}=$ money, $x^{(3)}=$ free, $x^{(4)}=\mathrm{xxx}$					

Conditional probability on spam:

$$
\begin{array}{ll}
P\left(x^{(1)}=0 \mid \text { spam }\right)=\frac{1}{2}, & P\left(x^{(1)}=1 \mid \text { spam }\right)=\frac{1}{2}, \\
P\left(x^{(2)}=0 \mid \text { spam }\right)=\frac{1}{2}, & P\left(x^{(2)}=1 \mid \text { spam }\right)=\frac{1}{2}, \\
P\left(x^{(3)}=0 \mid \text { spam }\right)=\frac{1}{2}, & P\left(x^{(3)}=1 \mid \text { spam }\right)=\frac{1}{2}, \\
P\left(x^{(4)}=0 \mid \text { spam }\right)=\frac{3}{4}, & P\left(x^{(4)}=1 \mid \text { spam }\right)=\frac{1}{4} .
\end{array}
$$

Concrete example with smoothing

	prince	money	free	xxx	Label
Sentence 1	1	1	0	0	spam
Sentence 2	0	0	1	0	ham
Sentence 3	0	0	1	0	ham
Sentence 4	0	0	1	0	spam
Sentence 5	1	0	1	0	ham
$x^{(1)}=$ prince, $x^{(2)}=$ money, $x^{(3)}=$ free, $x^{(4)}=\mathrm{xxx}$					

Conditional probability on ham:

$$
\begin{array}{ll}
P\left(x^{(1)}=0 \mid \text { ham }\right)=\frac{3}{5}, & P\left(x^{(1)}=1 \mid \text { ham }\right)=\frac{2}{5}, \\
P\left(x^{(2)}=0 \mid \text { ham }\right)=\frac{4}{5}, & P\left(x^{(2)}=1 \mid \text { ham }\right)=\frac{1}{5}, \\
P\left(x^{(3)}=0 \mid \text { ham }\right)=\frac{1}{5}, & P\left(x^{(3)}=1 \mid \text { ham }\right)=\frac{4}{5}, \\
P\left(x^{(4)}=0 \mid \text { ham }\right)=\frac{1}{5}, & P\left(x^{(4)}=1 \mid \text { ham }\right)=\frac{4}{5} .
\end{array}
$$

Concrete example with smoothing

- What happens if we try to classify the email "xxx what's your price, prince"?

prince	money	free	xxx
1	0	0	1

Spam:

P (features|spam)

$=P\left(x^{(1)}=1 \mid\right.$ spam $) P\left(x^{(2)}=0 \mid\right.$ spam $) P\left(x^{(3)}=0 \mid\right.$ spam $) P\left(x^{(4)}=1 \mid\right.$ spam $)$

$$
=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{4}=\frac{1}{32}
$$

Thus:
$P($ spam \mid features $) \propto P($ features \mid spam $) \cdot P($ spam $)=\frac{1}{32} \cdot \frac{2}{5}=\frac{1}{80}=0.0125$

Concrete example with smoothing

- What happens if we try to classify the email "xxx what's your price, prince"?

prince	money	free	xxx
1	0	0	1

Ham:

$$
P(\text { features|ham) }
$$

$=P\left(x^{(1)}=1 \mid\right.$ ham $) P\left(x^{(2)}=0 \mid\right.$ ham $) P\left(x^{(3)}=0 \mid\right.$ ham $) P\left(x^{(4)}=1 \mid\right.$ ham $)$

$$
=\frac{2}{5} \cdot \frac{4}{5} \cdot \frac{1}{5} \cdot \frac{1}{5}=\frac{8}{5^{4}}
$$

Thus:
$P($ ham \mid features $) \propto P($ features \mid ham $) \cdot P($ ham $)=\frac{8}{5^{4}} \cdot \frac{3}{5}=0.00768$

Concrete example with smoothing

- What happens if we try to classify the email "xxx what's your price, prince"?
We have:

$$
\begin{aligned}
& P(\text { spam } \mid \text { features }) \propto 0.0125 \\
& P(\text { ham } \mid \text { features }) \propto 0.00768
\end{aligned}
$$

Probability of spam: 61.94\%
Probability of ham: 38.06\%
It is classified as spam.

Practical demo

More realistic example

My source code in Java (it is easier to do in Python):
https://github.com/HyTruongSon/Spambase-filtering

Data:

https://archive.ics.uci.edu/ml/datasets/Spambase
Classifiers: Linear/RBF Support Vector Machine, Logistic Regression and Multilayer Perceptron.

