
Lecture 25 – Logistic Regression and Maximum
Likelihood Estimation

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others
Some materials are taken from Prof. Greg Shakhnarovich’s ML
course at TTIC.



Announcements
▶ Look at the readings linked on the course website!

▶ We will have the Thanksgiving break, so there is no class
on Friday this week.

▶ The final is coming, so there will be a review session next
week.



Agenda

▶ Text classification by Naive Bayes classifier (continued).

▶ Logistic Regression.

▶ Maximum Likelihood Estimation.



Text classification by Naive Bayes classifier
(continued)



Concrete example

Dictionary: “prince”, “money”, “free”, and “xxx”.
Dataset of 5 emails (red are spam, green are ham):
“I am the prince of UCSD and I demand money.”
“Tapioca Express: redeem your free Thai Iced Tea!”
“DSC 40A: free points if you fill out CAPEs!”
“Click here to make a tax-free donation to the IRS.”
“Free COVID-19 tests at Prince Center.”

prince money free xxx Label
Sentence 1 1 1 0 0 spam
Sentence 2 0 0 1 0 ham
Sentence 3 0 0 1 0 ham
Sentence 4 0 0 1 0 spam
Sentence 5 1 0 1 0 ham



Concrete example

prince money free xxx Label
Sentence 1 1 1 0 0 spam
Sentence 2 0 0 1 0 ham
Sentence 3 0 0 1 0 ham
Sentence 4 0 0 1 0 spam
Sentence 5 1 0 1 0 ham
𝑥(1) = prince, 𝑥(2) = money, 𝑥(3) = free, 𝑥(4) = xxx

Prior:
𝑃(spam) = 25
𝑃(ham) = 35



Concrete example
prince money free xxx Label

Sentence 1 1 1 0 0 spam
Sentence 2 0 0 1 0 ham
Sentence 3 0 0 1 0 ham
Sentence 4 0 0 1 0 spam
Sentence 5 1 0 1 0 ham
𝑥(1) = prince, 𝑥(2) = money, 𝑥(3) = free, 𝑥(4) = xxx

Conditional probability on spam:

𝑃(𝑥(1) = 0|spam) = 12, 𝑃(𝑥(1) = 1|spam) = 12,

𝑃(𝑥(2) = 0|spam) = 12, 𝑃(𝑥(2) = 1|spam) = 12,

𝑃(𝑥(3) = 0|spam) = 12, 𝑃(𝑥(3) = 1|spam) = 12,

𝑃(𝑥(4) = 0|spam) = 1, 𝑃(𝑥(4) = 1|spam) = 0.



Concrete example
prince money free xxx Label

Sentence 1 1 1 0 0 spam
Sentence 2 0 0 1 0 ham
Sentence 3 0 0 1 0 ham
Sentence 4 0 0 1 0 spam
Sentence 5 1 0 1 0 ham
𝑥(1) = prince, 𝑥(2) = money, 𝑥(3) = free, 𝑥(4) = xxx

Conditional probability on ham:

𝑃(𝑥(1) = 0|ham) = 23, 𝑃(𝑥(1) = 1|ham) = 13,

𝑃(𝑥(2) = 0|ham) = 1, 𝑃(𝑥(2) = 1|ham) = 0,
𝑃(𝑥(3) = 0|ham) = 0, 𝑃(𝑥(3) = 1|ham) = 1,
𝑃(𝑥(4) = 0|ham) = 1, 𝑃(𝑥(4) = 1|ham) = 0.



Concrete example

▶ New email to classify: “Download a free copy of the Prince
of Persia.”‘

prince money free xxx
1 0 1 0

To compute the probability of the text being spam, we have:
𝑃(features|spam)

= 𝑃(𝑥(1) = 1|spam)𝑃(𝑥(2) = 0|spam)𝑃(𝑥(3) = 1|spam)𝑃(𝑥(4) = 0|spam)

= 1
2 ⋅

1
2 ⋅

1
2 ⋅ 1 =

1
8

Thus:

𝑃(spam|features) ∝ 𝑃(features|spam) ⋅ 𝑃(spam) = 18 ⋅
2
5 =

1
20



Concrete example

▶ New email to classify: “Download a free copy of the Prince
of Persia.”‘

prince money free xxx
1 0 1 0

To compute the probability of the text being spam, we have:
𝑃(features|spam)

= 𝑃(𝑥(1) = 1|spam)𝑃(𝑥(2) = 0|spam)𝑃(𝑥(3) = 1|spam)𝑃(𝑥(4) = 0|spam)

= 1
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Concrete example

▶ New email to classify: “Download a free copy of the Prince
of Persia.”‘

prince money free xxx
1 0 1 0

To compute the probability of the text being ham, we have:
𝑃(features|ham)

= 𝑃(𝑥(1) = 1|ham)𝑃(𝑥(2) = 0|ham)𝑃(𝑥(3) = 1|ham)𝑃(𝑥(4) = 0|ham)

= 1
3 ⋅ 1 ⋅ 1 ⋅ 1 =

1
3

Thus:

𝑃(ham|features) ∝ 𝑃(features|ham) ⋅ 𝑃(ham) = 13 ⋅
3
5 =

1
5



Concrete example

▶ New email to classify: “Download a free copy of the Prince
of Persia.”‘

prince money free xxx
1 0 1 0

Because

𝑃(ham|features) = 15 > 𝑃(spam|features) =
1
20,

this sentence is classified as ham.



Uh oh...

▶ What happens if we try to classify the email “xxx what’s
your price, prince”?

prince money free xxx
1 0 0 1

There is a keyword “xxx” and the sentence is likely spam. But:

𝑃(𝑥(4) = 1|spam) = 0

Thus:
𝑃(features|spam) = 0

Then, it will be classified as ham with absolute certainty.



Uh oh...

▶ What happens if we try to classify the email “xxx what’s
your price, prince”?

prince money free xxx
1 0 0 1

There is a keyword “xxx” and the sentence is likely spam. But:

𝑃(𝑥(4) = 1|spam) = 0

Thus:
𝑃(features|spam) = 0

Then, it will be classified as ham with absolute certainty.



Smoothing

▶ Without smoothing:
𝑃(𝑥(𝑖) = 1 | spam) ≈ # spam containing word 𝑖

# spam containing word 𝑖 + # spam not containing word 𝑖

▶ With smoothing:
𝑃(𝑥(𝑖) = 1 | spam) ≈ (# spam containing word 𝑖) + 1

(# spam containing word 𝑖) + 1 + (# spam not containing word 𝑖) + 1

▶ When smoothing, we add 1 to the count of every group
whenever we’re estimating a conditional probability.
▶ Don’t smooth the estimates of unconditional
probabilities (e.g. 𝑃(spam)).



Concrete example with smoothing
prince money free xxx Label

Sentence 1 1 1 0 0 spam
Sentence 2 0 0 1 0 ham
Sentence 3 0 0 1 0 ham
Sentence 4 0 0 1 0 spam
Sentence 5 1 0 1 0 ham
𝑥(1) = prince, 𝑥(2) = money, 𝑥(3) = free, 𝑥(4) = xxx

Conditional probability on spam:

𝑃(𝑥(1) = 0|spam) = 12, 𝑃(𝑥(1) = 1|spam) = 12,

𝑃(𝑥(2) = 0|spam) = 12, 𝑃(𝑥(2) = 1|spam) = 12,

𝑃(𝑥(3) = 0|spam) = 12, 𝑃(𝑥(3) = 1|spam) = 12,

𝑃(𝑥(4) = 0|spam) = 34, 𝑃(𝑥(4) = 1|spam) = 14.



Concrete example with smoothing
prince money free xxx Label

Sentence 1 1 1 0 0 spam
Sentence 2 0 0 1 0 ham
Sentence 3 0 0 1 0 ham
Sentence 4 0 0 1 0 spam
Sentence 5 1 0 1 0 ham
𝑥(1) = prince, 𝑥(2) = money, 𝑥(3) = free, 𝑥(4) = xxx

Conditional probability on ham:

𝑃(𝑥(1) = 0|ham) = 35, 𝑃(𝑥(1) = 1|ham) = 25,

𝑃(𝑥(2) = 0|ham) = 45, 𝑃(𝑥(2) = 1|ham) = 15,

𝑃(𝑥(3) = 0|ham) = 15, 𝑃(𝑥(3) = 1|ham) = 45,

𝑃(𝑥(4) = 0|ham) = 15, 𝑃(𝑥(4) = 1|ham) = 45.



Concrete example with smoothing

▶ What happens if we try to classify the email “xxx what’s
your price, prince”?

prince money free xxx
1 0 0 1

Spam:
𝑃(features|spam)

= 𝑃(𝑥(1) = 1|spam)𝑃(𝑥(2) = 0|spam)𝑃(𝑥(3) = 0|spam)𝑃(𝑥(4) = 1|spam)

= 12 ⋅
1
2 ⋅

1
2 ⋅

1
4 =

1
32

Thus:

𝑃(spam|features) ∝ 𝑃(features|spam)⋅𝑃(spam) = 1
32⋅

2
5 =

1
80 = 0.0125



Concrete example with smoothing

▶ What happens if we try to classify the email “xxx what’s
your price, prince”?

prince money free xxx
1 0 0 1

Ham:
𝑃(features|ham)

= 𝑃(𝑥(1) = 1|ham)𝑃(𝑥(2) = 0|ham)𝑃(𝑥(3) = 0|ham)𝑃(𝑥(4) = 1|ham)

= 25 ⋅
4
5 ⋅

1
5 ⋅

1
5 =

8
54

Thus:

𝑃(ham|features) ∝ 𝑃(features|ham) ⋅ 𝑃(ham) = 8
54 ⋅

3
5 = 0.00768



Concrete example with smoothing

▶ What happens if we try to classify the email “xxx what’s
your price, prince”?

We have:
𝑃(spam|features) ∝ 0.0125
𝑃(ham|features) ∝ 0.00768

Probability of spam: 61.94%
Probability of ham: 38.06%
It is classified as spam.



Practical demo (see code for Lecture 24)



More realistic example

My source code in Java (it is easier to do in Python):

https://github.com/HyTruongSon/Spambase-filtering

Data:

https://archive.ics.uci.edu/ml/datasets/Spambase

Classifiers: Linear/RBF Support Vector Machine, Logistic
Regression and Multilayer Perceptron.

https://github.com/HyTruongSon/Spambase-filtering
https://archive.ics.uci.edu/ml/datasets/Spambase


Logistic Regression & Maximum Likelihood
Estimation



Introduction
▶ Classification methods of supervised machine learning
have many successful applications in vision, speech,
medicine, finance, etc.

▶ Setup: We need to map ⃗𝑥 ∈ 𝑋 to a label 𝑦 ∈ 𝑌 .

▶ Examples:

Digit images (MNIST dataset): ⃗𝑥 ∈ 𝑅28×28, 𝑦 ∈ {0, 1, .., 9}.



Introduction

The CIFAR-10 dataset consists of 60,000 32 × 32 colour images
in 10 classes, with 6,000 images per class. There are 50,000

training images and 10,000 test images.



Classification as regression?

▶ Suppose we have a binary problem: 𝑦 ∈ {−1, +1}.

▶ Idea: Treat it as regression, with squared loss.

▶ Assuming the model 𝑦 = 𝑓( ⃗𝑥; �⃗�, 𝑤0) = ⃗𝑥 ⋅ �⃗� + 𝑤0, and
solving with least squares, we get �⃗�∗ and 𝑤∗0.

▶ This corresponds to squared loss as a measure of
classification performance! Does this make sense?

▶ How do we decide on the label based on 𝑓( ⃗𝑥; �⃗�∗, 𝑤∗0)?



Classification as regression?

▶ Model:
𝑓( ⃗𝑥; �⃗�∗, 𝑤∗0) = �⃗�∗ ⋅ ⃗𝑥 + 𝑤∗0

▶ Cannot just take �̂� = 𝑓( ⃗𝑥; �⃗�∗, 𝑤∗0) since it won’t be a valid
label.

▶ A reasonable decision rule:

�̂� = sign(�⃗�∗ ⋅ ⃗𝑥 + 𝑤∗0)

If 𝑓( ⃗𝑥; �⃗�∗, 𝑤∗0) ≥ 0 then �̂� = 1, otherwise �̂� = −1.

▶ This specifies a linear classifier: The linear decision
boundary (hyperplane) given by the equation
�⃗�∗ ⋅ ⃗𝑥 + 𝑤∗0 = 0 separates the space into two “half-spaces”.



Example on 1D

Let’s consider the following data on 1-dimensional space. We
can easily separate the blue dots from the red crosses.

But can the linear classifier successfully classify this data with
100% accuracy?



Example on 1D

The value for blue dots is +1. The value for red crosses is -1.
Let’s try our linear regression!



Example on 1D

The green line is our decision boundary / hyperplane. Let’s
classify the points!



Example on 1D

Our linear classifier can classify this data with 100% accuracy.

But let’s add one more point to the data!



Example 1D

We add one outlier to the right. By a simple threshold, we can
easily classify this data. But let’s see how this outlier affects
our linear regression and decision boundary!



Example 1D

The linear regression is sensitive to the outlier. As the
consequence, our linear classifier can no longer classify this
simple data with 100% accuracy!



Example 2D

Let’s consider some data on 2-dimensional space!

In conclusion, we should not use the squared loss.



Linear classifier

▶ Hypothesis:
�̂� = ℎ( ⃗𝑥) = sign( ⃗𝑥 ⋅ �⃗� + 𝑤0)

▶ Classifying using a linear decision boundary effectively
reduces the data dimension to 1.

▶ We need to find the direction �⃗� and location 𝑤0 of the
boundary.

▶ We want to minimize the expected zero/one loss for
classifier ℎ ∶ 𝑋 → 𝑌 , which for ( ⃗𝑥, 𝑦) is:

𝐿(ℎ( ⃗𝑥), 𝑦) = {0 if ℎ( ⃗𝑥) = 𝑦,
1 if ℎ( ⃗𝑥) ≠ 𝑦.



Empirical Risk Minimization

▶ The risk (expected loss) of a 𝐶-way classifier ℎ( ⃗𝑥) (i.e. 𝐶 is
the number of classes):

𝑅(ℎ) = 𝐸𝑝( ⃗𝑥,𝑦)[𝐿(ℎ( ⃗𝑥), 𝑦)],

where 𝐸 denotes the expectation and 𝑝( ⃗𝑥, 𝑦) denotes the
joint probability distribution of our data ( ⃗𝑥, 𝑦). Our data is
considered as samples drawn from 𝑝.

▶ We can write the risk in intergral form:

𝑅(ℎ) = ∫
⃗𝑥

𝐶
∑
𝑐=1

𝐿(ℎ( ⃗𝑥), 𝑐)𝑝( ⃗𝑥, 𝑦 = 𝑐)𝑑 ⃗𝑥



Empirical Risk Minimization

▶ We can further write the risk as:

𝑅(ℎ) = ∫
⃗𝑥
[
𝐶
∑
𝑐=1

𝐿(ℎ( ⃗𝑥), 𝑐)𝑝(𝑦 = 𝑐| ⃗𝑥)]𝑝( ⃗𝑥)𝑑 ⃗𝑥

▶ Clearly, it is enough to minimize the conditional risk for
any ⃗𝑥:

𝑅(ℎ| ⃗𝑥) =
𝐶
∑
𝑐=1

𝐿(ℎ( ⃗𝑥), 𝑐)𝑝(𝑦 = 𝑐| ⃗𝑥)

▶ Next time: We will continue learning about how to find
the hypothesis ℎ via the ERM framework and derive to
Logistic Regression.


