
Lecture 26 – Logistic Regression and Maximum
Likelihood Estimation (continued)

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others
Some materials are taken from Prof. Greg Shakhnarovich’s ML
course at TTIC.

Announcements
▶ The final is coming!

▶ There will be a review session.

Agenda

▶ Logistic Regression.

▶ Maximum Likelihood Estimation.

Logistic Regression

Linear classifier

▶ Hypothesis:
�̂� = ℎ(⃗𝑥) = sign(⃗𝑥 ⋅ �⃗� + 𝑤0)

▶ Classifying using a linear decision boundary effectively
reduces the data dimension to 1.

▶ We need to find the direction �⃗� and location 𝑤0 of the
boundary.

▶ We want to minimize the expected zero/one loss for
classifier ℎ ∶ 𝑋 → 𝑌 , which for (⃗𝑥, 𝑦) is:

𝐿(ℎ(⃗𝑥), 𝑦) = {0 if ℎ(⃗𝑥) = 𝑦,
1 if ℎ(⃗𝑥) ≠ 𝑦.

Empirical Risk Minimization
▶ The risk (expected loss) of a 𝐶-way classifier ℎ(⃗𝑥):

𝑅(ℎ) = 𝐸𝑝(⃗𝑥,𝑦)[𝐿(ℎ(⃗𝑥), 𝑦)].

▶ We can write the risk in intergral form:

𝑅(ℎ) = ∫
⃗𝑥

𝐶
∑
𝑐=1

𝐿(ℎ(⃗𝑥), 𝑐)𝑝(⃗𝑥, 𝑦 = 𝑐)𝑑 ⃗𝑥

⇔ 𝑅(ℎ) = ∫
⃗𝑥
[
𝐶
∑
𝑐=1

𝐿(ℎ(⃗𝑥), 𝑐)𝑝(𝑦 = 𝑐| ⃗𝑥)]𝑝(⃗𝑥)𝑑 ⃗𝑥

▶ Clearly, it is enough to minimize the conditional risk for
any ⃗𝑥:

𝑅(ℎ| ⃗𝑥) =
𝐶
∑
𝑐=1

𝐿(ℎ(⃗𝑥), 𝑐)𝑝(𝑦 = 𝑐| ⃗𝑥)

Conditional risk of a classifier
▶ Conditional risk:

𝑅(ℎ| ⃗𝑥) =
𝐶
∑
𝑐=1

𝐿(ℎ(⃗𝑥), 𝑐)𝑝(𝑦 = 𝑐| ⃗𝑥)

▶ We can factorize this risk as:

𝑅(ℎ| ⃗𝑥) = 0 ⋅ 𝑝(𝑦 = ℎ(⃗𝑥)| ⃗𝑥) + 1 ⋅ ∑
𝑐≠ℎ(⃗𝑥)

𝑝(𝑦 = 𝑐| ⃗𝑥),

⇔ 𝑅(ℎ) = ∑
𝑐≠ℎ(⃗𝑥)

𝑝(𝑦 = 𝑐| ⃗𝑥) = 1 − 𝑝(𝑦 = ℎ(⃗𝑥)| ⃗𝑥)

▶ To minimize conditional risk given ⃗𝑥, the classifier must
decide:

ℎ(⃗𝑥) = argmax𝑐𝑝(𝑦 = 𝑐| ⃗𝑥)

Log-odds ratio

▶ Optimal rule ℎ(⃗𝑥) = argmax𝑐𝑝(𝑦 = 𝑐| ⃗𝑥) is equivalent to:

ℎ(⃗𝑥) = 𝑐∗ ⇔ 𝑝(𝑦 = 𝑐∗| ⃗𝑥)
𝑝(𝑦 = 𝑐| ⃗𝑥) ≥ 1 ∀𝑐

that is equivalent to:

log
𝑝(𝑦 = 𝑐∗| ⃗𝑥)
𝑝(𝑦 = 𝑐| ⃗𝑥) ≥ 0 ∀𝑐

▶ For the binary case:

ℎ(⃗𝑥) = 1 ⇔ log
𝑝(𝑦 = 1| ⃗𝑥)
𝑝(𝑦 = 0| ⃗𝑥) ≥ 0.

The logistic model
▶ We can model the (unknown) decision boundary directly:

log
𝑝(𝑦 = 1| ⃗𝑥)
𝑝(𝑦 = 0| ⃗𝑥) = ⃗𝑥 ⋅ �⃗� + 𝑤0 = 0.

▶ Since 𝑝(𝑦 = 1| ⃗𝑥) = 1 − 𝑝(𝑦 = 0| ⃗𝑥), we have (after
exponentiating):

𝑝(𝑦 = 1| ⃗𝑥)
1 − 𝑝(𝑦 = 1| ⃗𝑥) = exp(⃗𝑥 ⋅ �⃗� + 𝑤0) = 1

⇒ 1
𝑝(𝑦 = 1| ⃗𝑥) = 1 + exp(− ⃗𝑥 ⋅ �⃗� − 𝑤0) = 2

⇒ 𝑝(𝑦 = 1| ⃗𝑥) = 1
1 + exp(− ⃗𝑥 ⋅ �⃗� − 𝑤0)

= 12

The logistic model
▶ We can model the (unknown) decision boundary directly:

log
𝑝(𝑦 = 1| ⃗𝑥)
𝑝(𝑦 = 0| ⃗𝑥) = ⃗𝑥 ⋅ �⃗� + 𝑤0 = 0.

▶ Since 𝑝(𝑦 = 1| ⃗𝑥) = 1 − 𝑝(𝑦 = 0| ⃗𝑥), we have (after
exponentiating):

𝑝(𝑦 = 1| ⃗𝑥)
1 − 𝑝(𝑦 = 1| ⃗𝑥) = exp(⃗𝑥 ⋅ �⃗� + 𝑤0) = 1

⇒ 1
𝑝(𝑦 = 1| ⃗𝑥) = 1 + exp(− ⃗𝑥 ⋅ �⃗� − 𝑤0) = 2

⇒ 𝑝(𝑦 = 1| ⃗𝑥) = 1
1 + exp(− ⃗𝑥 ⋅ �⃗� − 𝑤0)

= 12

The logistic model
▶ We can model the (unknown) decision boundary directly:

log
𝑝(𝑦 = 1| ⃗𝑥)
𝑝(𝑦 = 0| ⃗𝑥) = ⃗𝑥 ⋅ �⃗� + 𝑤0 = 0.

▶ Since 𝑝(𝑦 = 1| ⃗𝑥) = 1 − 𝑝(𝑦 = 0| ⃗𝑥), we have (after
exponentiating):

𝑝(𝑦 = 1| ⃗𝑥)
1 − 𝑝(𝑦 = 1| ⃗𝑥) = exp(⃗𝑥 ⋅ �⃗� + 𝑤0) = 1

⇒ 1
𝑝(𝑦 = 1| ⃗𝑥) = 1 + exp(− ⃗𝑥 ⋅ �⃗� − 𝑤0) = 2

⇒ 𝑝(𝑦 = 1| ⃗𝑥) = 1
1 + exp(− ⃗𝑥 ⋅ �⃗� − 𝑤0)

= 12

The logistic function
▶ The logistic / sigmoid function: 𝜎(𝑥) = 1

1+𝑒−𝑥 .
For any 𝑥 ∈ 𝑅: 0 ≤ 𝜎(𝑥) ≤ 1.
Monotonic: lim𝑥→−∞𝜎(𝑥) = 0 and lim𝑥→+∞𝜎(𝑥) = 1.

▶ We have:

𝑝(𝑦 = 1| ⃗𝑥) = 1
1 + exp(− ⃗𝑥 ⋅ �⃗� − 𝑤0)

= 𝜎(ℎ(⃗𝑥))

Logistic function in ℝ𝑑

▶ For ⃗𝑥 ∈ ℝ𝑑 , 𝜎(�⃗� ⋅ ⃗𝑥 + 𝑤0) is a scalar function of a scalar
variable �⃗� ⋅ ⃗𝑥 + 𝑤0.

▶ The direction of �⃗� determines the orientation, 𝑤0
determines the location, and ‖�⃗�‖ determines the slope.

Decision boundary of Logistic Regression

With linear logistic model, we get a linear decision boundary:

𝑝(𝑦 = 1| ⃗𝑥) = 𝜎(�⃗� ⋅ ⃗𝑥 + 𝑤0) =
1
2 ⇔ �⃗� ⋅ ⃗𝑥 + 𝑤0 = 0

Maximum Likelihood Estimation

Likelihood under the logistic model

▶ Regression: observe values, measure residuals under the
model.

▶ Logistic regression: observe labels, measure their
probability under the model.

𝑝(𝑦𝑖| ⃗𝑥𝑖; �⃗�) = {
𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) if 𝑦𝑖 = 1,
1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) if 𝑦𝑖 = 0.

We can write it compactly as:

𝑝(𝑦𝑖| ⃗𝑥𝑖; �⃗�, 𝑤0) = 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)𝑦𝑖 ⋅ (1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0))1−𝑦𝑖 .

Likelihood under the logistic model
Suppose we are given a dataset 𝐷 = {(⃗𝑥𝑖, 𝑦𝑖)}

𝑁
𝑖=1 of 𝑁 samples.

The likelihood of �⃗� and 𝑤0 on this data is defined as:

𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∏
𝑖=1

𝑝(𝑦𝑖| ⃗𝑥𝑖; �⃗�, 𝑤0)

The log-likelihood is then:

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =

𝑁
∑
𝑖=1

log𝑝(𝑦𝑖| ⃗𝑥𝑖; �⃗�, 𝑤0),

that is equal to:

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
𝑦𝑖 log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) + (1 − 𝑦𝑖) log(1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0))

Likelihood under the logistic model
Suppose we are given a dataset 𝐷 = {(⃗𝑥𝑖, 𝑦𝑖)}

𝑁
𝑖=1 of 𝑁 samples.

The likelihood of �⃗� and 𝑤0 on this data is defined as:

𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∏
𝑖=1

𝑝(𝑦𝑖| ⃗𝑥𝑖; �⃗�, 𝑤0)

The log-likelihood is then:

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1

log𝑝(𝑦𝑖| ⃗𝑥𝑖; �⃗�, 𝑤0),

that is equal to:

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
𝑦𝑖 log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) + (1 − 𝑦𝑖) log(1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0))

Maximum Likelihood Solution
We want to find �⃗� and 𝑤0 that maximizes the log-likelihood:

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
𝑦𝑖 log𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)+(1−𝑦𝑖) log(1−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0))

We find the derivatives:

𝜕
𝜕𝑤0

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
(𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0))

𝜕
𝜕𝑤𝑗

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
(𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0))𝑥𝑖𝑗

We can treat 𝑦𝑖 − 𝑝(𝑦𝑖| ⃗𝑥𝑖) = 𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) as the prediction
error of the model on ⃗𝑥𝑖, 𝑦𝑖.

Maximum Likelihood Solution
We want to find �⃗� and 𝑤0 that maximizes the log-likelihood:

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
𝑦𝑖 log𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)+(1−𝑦𝑖) log(1−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0))

We find the derivatives:

𝜕
𝜕𝑤0

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
(𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0))

𝜕
𝜕𝑤𝑗

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
(𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0))𝑥𝑖𝑗

We can treat 𝑦𝑖 − 𝑝(𝑦𝑖| ⃗𝑥𝑖) = 𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) as the prediction
error of the model on ⃗𝑥𝑖, 𝑦𝑖.

Derivatives for ln and 𝜎
▶ Logarithm:

𝑑
𝑑𝑥 ln(𝑥) = 1𝑥 ,

𝑑
𝑑𝑥 log𝑎(𝑥) =

1
𝑥 ln(𝑎)

▶ Sigmoid:
𝜎(𝑥) = 1

1 + 𝑒−𝑥
𝑑
𝑑𝑥𝜎(𝑥) =

𝑑
𝑑𝑥

1
1 + 𝑒−𝑥 =

𝑑
𝑑𝑥 (1 + 𝑒

−𝑥)−1 = −(1 + 𝑒−𝑥)−2 𝑑𝑑𝑥 (1 + 𝑒
−𝑥)

⇔ 𝑑
𝑑𝑥𝜎(𝑥) = (1 + 𝑒

−𝑥)−2𝑒−𝑥 = 𝑒−𝑥
(1 + 𝑒−𝑥)2 =

1
1 + 𝑒−𝑥 ⋅

𝑒−𝑥
1 + 𝑒−𝑥

⇔ 𝑑
𝑑𝑥𝜎(𝑥) = 𝜎(𝑥) ⋅

𝑒−𝑥 + 1 − 1
1 + 𝑒−𝑥 = 𝜎(𝑥) ⋅ [1 − 𝜎(𝑥)]

Derivatives for ln and 𝜎
▶ Logarithm:

𝑑
𝑑𝑥 ln(𝑥) = 1𝑥 ,

𝑑
𝑑𝑥 log𝑎(𝑥) =

1
𝑥 ln(𝑎)

▶ Sigmoid:
𝜎(𝑥) = 1

1 + 𝑒−𝑥
𝑑
𝑑𝑥𝜎(𝑥) =

𝑑
𝑑𝑥

1
1 + 𝑒−𝑥 =

𝑑
𝑑𝑥 (1 + 𝑒

−𝑥)−1 = −(1 + 𝑒−𝑥)−2 𝑑𝑑𝑥 (1 + 𝑒
−𝑥)

⇔ 𝑑
𝑑𝑥𝜎(𝑥) = (1 + 𝑒

−𝑥)−2𝑒−𝑥 = 𝑒−𝑥
(1 + 𝑒−𝑥)2 =

1
1 + 𝑒−𝑥 ⋅

𝑒−𝑥
1 + 𝑒−𝑥

⇔ 𝑑
𝑑𝑥𝜎(𝑥) = 𝜎(𝑥) ⋅

𝑒−𝑥 + 1 − 1
1 + 𝑒−𝑥 = 𝜎(𝑥) ⋅ [1 − 𝜎(𝑥)]

Derivatives for ln and 𝜎
▶ Logarithm:

𝑑
𝑑𝑥 ln(𝑥) = 1𝑥 ,

𝑑
𝑑𝑥 log𝑎(𝑥) =

1
𝑥 ln(𝑎)

▶ Sigmoid:
𝜎(𝑥) = 1

1 + 𝑒−𝑥
𝑑
𝑑𝑥𝜎(𝑥) =

𝑑
𝑑𝑥

1
1 + 𝑒−𝑥 =

𝑑
𝑑𝑥 (1 + 𝑒

−𝑥)−1 = −(1 + 𝑒−𝑥)−2 𝑑𝑑𝑥 (1 + 𝑒
−𝑥)

⇔ 𝑑
𝑑𝑥𝜎(𝑥) = (1 + 𝑒

−𝑥)−2𝑒−𝑥 = 𝑒−𝑥
(1 + 𝑒−𝑥)2 =

1
1 + 𝑒−𝑥 ⋅

𝑒−𝑥
1 + 𝑒−𝑥

⇔ 𝑑
𝑑𝑥𝜎(𝑥) = 𝜎(𝑥) ⋅

𝑒−𝑥 + 1 − 1
1 + 𝑒−𝑥 = 𝜎(𝑥) ⋅ [1 − 𝜎(𝑥)]

Partial derivatives for log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
For 𝑤0:

𝜕
𝜕𝑤0

log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) =
1

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤0

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= 1
𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤0

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= 1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
For 𝑤𝑗:

𝜕
𝜕𝑤𝑗

log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) =
1

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤𝑗

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= 1
𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤𝑗

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= [1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]𝑥𝑖𝑗

Partial derivatives for log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
For 𝑤0:

𝜕
𝜕𝑤0

log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) =
1

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤0

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= 1
𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤0

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= 1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
For 𝑤𝑗:

𝜕
𝜕𝑤𝑗

log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) =
1

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤𝑗

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= 1
𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤𝑗

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= [1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]𝑥𝑖𝑗

Partial derivatives for log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
For 𝑤0:

𝜕
𝜕𝑤0

log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) =
1

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤0

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= 1
𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤0

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= 1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
For 𝑤𝑗:

𝜕
𝜕𝑤𝑗

log𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) =
1

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤𝑗

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= 1
𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤𝑗

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= [1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]𝑥𝑖𝑗

Partial derivatives for log[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
For 𝑤0:

𝜕
𝜕𝑤0

log[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)] =
1

1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤0

[1−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)]

= −1
1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤0

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= −𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

For 𝑤𝑗:

𝜕
𝜕𝑤𝑗

log[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)] =
1

1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤𝑗

[1−𝜎(�⃗� ⋅ ⃗𝑥𝑖+𝑤0)]

= −1
1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤𝑗

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= −𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)𝑥𝑖𝑗

Partial derivatives for log[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
For 𝑤0:

𝜕
𝜕𝑤0

log[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)] =
1

1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤0

[1−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)]

= −1
1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤0

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= −𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
For 𝑤𝑗:

𝜕
𝜕𝑤𝑗

log[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)] =
1

1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)
𝜕
𝜕𝑤𝑗

[1−𝜎(�⃗� ⋅ ⃗𝑥𝑖+𝑤0)]

= −1
1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)[1 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]
𝜕
𝜕𝑤𝑗

(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

= −𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)𝑥𝑖𝑗

Partial derivatives for log𝑝(𝑌|𝑋; �⃗�, 𝑤0)
Log-likelihood:

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
𝑦𝑖 log𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)+(1−𝑦𝑖) log(1−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0))

For 𝑤0:

𝜕
𝜕𝑤0

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
𝑦𝑖[1−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)]+(1−𝑦𝑖)[−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)]

=
𝑁
∑
𝑖=1
𝑦𝑖 − 𝑦𝑖𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) + 𝑦𝑖𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)

=
𝑁
∑
𝑖=1
[𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]

Partial derivatives for log𝑝(𝑌|𝑋; �⃗�, 𝑤0)
Log-likelihood:

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
𝑦𝑖 log𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)+(1−𝑦𝑖) log(1−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0))

For 𝑤𝑗:

𝜕
𝜕𝑤𝑗

log𝑝(𝑌|𝑋; �⃗�, 𝑤0) =
𝑁
∑
𝑖=1
𝑦𝑖[1−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)]𝑥𝑖𝑗+(1−𝑦𝑖)[−𝜎(�⃗�⋅ ⃗𝑥𝑖+𝑤0)]𝑥𝑖𝑗

=
𝑁
∑
𝑖=1
[𝑦𝑖 − 𝑦𝑖𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0) + 𝑦𝑖𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]𝑥𝑖𝑗

=
𝑁
∑
𝑖=1
[𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0)]𝑥𝑖𝑗

Gradient ascent for MLE
Thus, we get the gradients as follows:

𝜕
𝜕𝑤0

log𝑝(𝑌|𝑋; �⃗�) =
𝑁
∑
𝑖=1
(𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0))

𝜕
𝜕𝑤𝑗

log𝑝(𝑌|𝑋; �⃗�) =
𝑁
∑
𝑖=1
(𝑦𝑖 − 𝜎(�⃗� ⋅ ⃗𝑥𝑖 + 𝑤0))𝑥𝑖𝑗

We can cycle through the examples, accumulating the
gradient, and then applying the accumulated value to form an
update:

𝑤(𝑡+1)0 ← 𝑤(𝑡)0 + 𝛼 ⋅ 𝜕
𝜕𝑤0

log𝑝(𝑌|𝑋; �⃗�, 𝑤0)

�⃗�(𝑡+1) ← �⃗�(𝑡) + 𝛼 ⋅ 𝜕𝜕�⃗� log𝑝(𝑌|𝑋; �⃗�, 𝑤0) ⃗𝑥

where 𝛼 is the learning rate.

Gradient ascent for MLE

▶ Recall that we really want to minimize the 0/1 loss.

▶ Instead, we are minimizing the log-loss or maximizing the
log-likelihood:

argmax�⃗�
𝑁
∑
𝑖=1

log𝑝(𝑦𝑖| ⃗𝑥𝑖; �⃗�) = argmin�⃗� −
𝑁
∑
𝑖=1

log𝑝(𝑦𝑖| ⃗𝑥𝑖; �⃗�)

▶ This is a surrogate loss: we work with it since it is not
computationally feasible to optimize the 0/1 loss directly.

Problem of gradient descent and gradient
ascent
We need to choose the learning rate 𝛼 rather carefully:
▶ Too small⇒ Slow convergence.

▶ Too large⇒ Overshoot and oscillation.

Newton–Raphson algorithm

▶ The Newton-Raphson algorithm: approximate the local
shape of the loss function 𝐿 as a quadratic function:

�⃗�new ← �⃗� − 𝐻−1 𝜕𝜕�⃗� 𝐿(�⃗�),

where 𝐻 is the Hessian matrix of second derivatives:

𝐻 = ⎛⎜⎜

⎝

𝜕2𝐿
𝜕𝑤20

𝜕2𝐿
𝜕𝑤0𝜕𝑤1

⋯ 𝜕2𝐿
𝜕𝑤0𝜕𝑤𝑑

𝜕2𝐿
𝜕𝑤0𝜕𝑤1

𝜕2𝐿
𝜕𝑤21

⋯ 𝜕2𝐿
𝜕𝑤1𝜕𝑤𝑑

⋯ ⋯ ⋯ ⋯
𝜕2𝐿

𝜕𝑤𝑑𝜕𝑤0
𝜕2𝐿

𝜕𝑤𝑑𝜕𝑤1
⋯ 𝜕2𝐿

𝜕𝑤2𝑑

⎞⎟⎟

⎠

▶ This is a second-order method, while gradient
descent/ascent are first-order methods.

Generalized additive models

▶ As with regression, we can extend the MLE framework for
logistic regression to arbitrary features (basis functions):

𝑝(𝑦 = 1| ⃗𝑥) = 𝜎(𝑤0 + 𝜙1(⃗𝑥) + ⋯ + 𝜙𝑚(⃗𝑥)).

▶ Example: Quadratic logistic regression in 2D

𝑝(𝑦 = 1| ⃗𝑥) = 𝜎(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥21 + 𝑤4𝑥22),

with quadratic decision boundary

𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥21 + 𝑤4𝑥22 = 0.

Generalized additive models

Library for Logistic Regression

https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LogisticRegression.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Next time

The course summary and practical questions
for the final exam!

