Lecture 26 - Logistic Regression and Maximum Likelihood Estimation (continued)

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others
Some materials are taken from Prof. Greg Shakhnarovich's ML course at TTIC.

Announcements

The final is coming!

There will be a review session.

Agenda

- Logistic Regression.
- Maximum Likelihood Estimation.

Logistic Regression

Linear classifier

- Hypothesis:

$$
\hat{y}=h(\vec{x})=\operatorname{sign}\left(\vec{x} \cdot \vec{w}+w_{0}\right)
$$

- Classifying using a linear decision boundary effectively reduces the data dimension to 1.
- We need to find the direction \vec{w} and location w_{0} of the boundary.
- We want to minimize the expected zero/one loss for classifier $h: X \rightarrow Y$, which for (\vec{x}, y) is:

$$
L(h(\vec{x}), y)= \begin{cases}0 & \text { if } h(\vec{x})=y \\ 1 & \text { if } h(\vec{x}) \neq y\end{cases}
$$

Empirical Risk Minimization

- The risk (expected loss) of a C-way classifier $h(\vec{x})$:

$$
R(h)=E_{p(\vec{x}, y)}[L(h(\vec{x}), y)] .
$$

- We can write the risk in intergral form:

$$
\begin{aligned}
& R(h)=\int_{\vec{x}} \sum_{c=1}^{c} L(h(\vec{x}), c) p(\vec{x}, y=c) d \vec{x} \\
\Leftrightarrow & R(h)=\int_{\vec{x}}\left[\sum_{c=1}^{c} L(h(\vec{x}), c) p(y=c \mid \vec{x})\right] p(\vec{x}) d \vec{x}
\end{aligned}
$$

- Clearly, it is enough to minimize the conditional risk for any \vec{x} :

$$
R(h \mid \vec{x})=\sum_{c=1}^{c} L(h(\vec{x}), c) p(y=c \mid \vec{x})
$$

Conditional risk of a classifier

- Conditional risk:

$$
R(h \mid \vec{x})=\sum_{c=1}^{c} L(h(\vec{x}), c) p(y=c \mid \vec{x})
$$

- We can factorize this risk as:

$$
\begin{aligned}
& R(h \mid \vec{x})=0 \cdot p(y=h(\vec{x}) \mid \vec{x})+1 \cdot \sum_{c \neq h(\vec{x})} p(y=c \mid \vec{x}), \\
& \Leftrightarrow R(h)=\sum_{c \neq h(\vec{x})} p(y=c \mid \vec{x})=1-p(y=h(\vec{x}) \mid \vec{x})
\end{aligned}
$$

- To minimize conditional risk given \vec{x}, the classifier must decide:

$$
h(\vec{x})=\operatorname{argmax}_{c} p(y=c \mid \vec{x})
$$

Log-odds ratio

- Optimal rule $h(\vec{x})=\operatorname{argmax}_{c} p(y=c \mid \vec{x})$ is equivalent to:

$$
h(\vec{x})=c^{*} \Leftrightarrow \frac{p\left(y=c^{*} \mid \vec{x}\right)}{p(y=c \mid \vec{x})} \geq 1 \quad \forall c
$$

that is equivalent to:

$$
\log \frac{p\left(y=c^{*} \mid \vec{x}\right)}{p(y=c \mid \vec{x})} \geq 0 \quad \forall c
$$

- For the binary case:

$$
h(\vec{x})=1 \Leftrightarrow \log \frac{p(y=1 \mid \vec{x})}{p(y=0 \mid \vec{x})} \geq 0 .
$$

The logistic model

- We can model the (unknown) decision boundary directly:

$$
\log \frac{p(y=1 \mid \vec{x})}{p(y=0 \mid \vec{x})}=\vec{x} \cdot \vec{w}+w_{0}=0
$$

- Since $p(y=1 \mid \vec{x})=1-p(y=0 \mid \vec{x})$, we have (after exponentiating):

$$
\frac{p(y=1 \mid \vec{x})}{1-p(y=1 \mid \vec{x})}=\exp \left(\vec{x} \cdot \vec{w}+w_{0}\right)=1
$$

The logistic model

- We can model the (unknown) decision boundary directly:

$$
\log \frac{p(y=1 \mid \vec{x})}{p(y=0 \mid \vec{x})}=\vec{x} \cdot \vec{w}+w_{0}=0
$$

- Since $p(y=1 \mid \vec{x})=1-p(y=0 \mid \vec{x})$, we have (after exponentiating):

$$
\begin{aligned}
& \frac{p(y=1 \mid \vec{x})}{1-p(y=1 \mid \vec{x})}=\exp \left(\vec{x} \cdot \vec{w}+w_{0}\right)=1 \\
\Rightarrow & \frac{1}{p(y=1 \mid \vec{x})}=1+\exp \left(-\vec{x} \cdot \vec{w}-w_{0}\right)=2
\end{aligned}
$$

The logistic model

- We can model the (unknown) decision boundary directly:

$$
\log \frac{p(y=1 \mid \vec{x})}{p(y=0 \mid \vec{x})}=\vec{x} \cdot \vec{w}+w_{0}=0
$$

- Since $p(y=1 \mid \vec{x})=1-p(y=0 \mid \vec{x})$, we have (after exponentiating):

$$
\begin{aligned}
& \frac{p(y=1 \mid \vec{x})}{1-p(y=1 \mid \vec{x})}=\exp \left(\vec{x} \cdot \vec{w}+w_{0}\right)=1 \\
\Rightarrow & \frac{1}{p(y=1 \mid \vec{x})}=1+\exp \left(-\vec{x} \cdot \vec{w}-w_{0}\right)=2 \\
\Rightarrow & p(y=1 \mid \vec{x})=\frac{1}{1+\exp \left(-\vec{x} \cdot \vec{w}-w_{0}\right)}=\frac{1}{2}
\end{aligned}
$$

The logistic function

\Rightarrow The logistic / sigmoid function: $\sigma(x)=\frac{1}{1+e^{-x}}$.
For any $x \in R: 0 \leq \sigma(x) \leq 1$.
Monotonic: $\lim _{x \rightarrow-\infty} \sigma(x)=0$ and $\lim _{x \rightarrow+\infty} \sigma(x)=1$.

- We have:

$$
p(y=1 \mid \vec{x})=\frac{1}{1+\exp \left(-\vec{x} \cdot \vec{w}-w_{0}\right)}=\sigma(h(\vec{x}))
$$

Logistic function in \mathbb{R}^{d}

\Rightarrow For $\vec{x} \in \mathbb{R}^{d}, \sigma\left(\vec{w} \cdot \vec{x}+w_{0}\right)$ is a scalar function of a scalar variable $\vec{w} \cdot \vec{x}+w_{0}$.

$>$ The direction of \vec{w} determines the orientation, w_{0} determines the location, and $\|\vec{w}\|$ determines the slope.

Decision boundary of Logistic Regression

With linear logistic model, we get a linear decision boundary:

$$
p(y=1 \mid \vec{x})=\sigma\left(\vec{w} \cdot \vec{x}+w_{0}\right)=\frac{1}{2} \Leftrightarrow \vec{w} \cdot \vec{x}+w_{0}=0
$$

Maximum Likelihood Estimation

Likelihood under the logistic model

- Regression: observe values, measure residuals under the model.
- Logistic regression: observe labels, measure their probability under the model.

$$
p\left(y_{i} \mid \vec{x}_{i} ; \vec{w}\right)= \begin{cases}\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) & \text { if } y_{i}=1 \\ 1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) & \text { if } y_{i}=0 .\end{cases}
$$

We can write it compactly as:

$$
p\left(y_{i} \mid \vec{x}_{i} ; \vec{w}, w_{0}\right)=\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)^{y_{i}} \cdot\left(1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right)^{1-y_{i}} .
$$

Likelihood under the logistic model

Suppose we are given a dataset $D=\left\{\left(\vec{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$ of N samples. The likelihood of \vec{w} and w_{0} on this data is defined as:

$$
p\left(Y \mid X ; \vec{w}, w_{0}\right)=\prod_{i=1}^{N} p\left(y_{i} \mid \vec{x}_{i} ; \vec{w}, w_{0}\right)
$$

The log-likelihood is then:

$$
\log p\left(Y \mid X ; \vec{w}, w_{0}\right)=
$$

Likelihood under the logistic model

Suppose we are given a dataset $D=\left\{\left(\vec{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$ of N samples.
The likelihood of \vec{w} and w_{0} on this data is defined as:

$$
p\left(Y \mid X ; \vec{w}, w_{0}\right)=\prod_{i=1}^{N} p\left(y_{i} \mid \vec{x}_{i} ; \vec{w}, w_{0}\right)
$$

The log-likelihood is then:

$$
\log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N} \log p\left(y_{i} \mid \vec{x}_{i} ; \vec{w}, w_{0}\right),
$$

that is equal to:
$\log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N} y_{i} \log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right)$

Maximum Likelihood Solution

We want to find \vec{w} and w_{0} that maximizes the log-likelihood:
$\log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N} y_{i} \log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right)$

Maximum Likelihood Solution

We want to find \vec{w} and w_{0} that maximizes the log-likelihood:
$\log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N} y_{i} \log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right)$
We find the derivatives:

$$
\begin{aligned}
& \frac{\partial}{\partial w_{0}} \log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N}\left(y_{i}-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right) \\
& \frac{\partial}{\partial w_{j}} \log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N}\left(y_{i}-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right) x_{i j}
\end{aligned}
$$

We can treat $y_{i}-p\left(y_{i} \mid \vec{x}_{i}\right)=y_{i}-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)$ as the prediction error of the model on \vec{x}_{i}, y_{i}.

Derivatives for \ln and σ

Logarithm:

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}, \quad \frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}
$$

Derivatives for \ln and σ

Logarithm:

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}, \quad \frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}
$$

Sigmoid:

$$
\begin{gathered}
\sigma(x)=\frac{1}{1+e^{-x}} \\
\frac{d}{d x} \sigma(x)=\frac{d}{d x} \frac{1}{1+e^{-x}}=\frac{d}{d x}\left(1+e^{-x}\right)^{-1}=-\left(1+e^{-x}\right)^{-2} \frac{d}{d x}\left(1+e^{-x}\right)
\end{gathered}
$$

Derivatives for \ln and σ

Logarithm:

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}, \quad \frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}
$$

Sigmoid:

$$
\begin{gathered}
\sigma(x)=\frac{1}{1+e^{-x}} \\
\frac{d}{d x} \sigma(x)=\frac{d}{d x} \frac{1}{1+e^{-x}}=\frac{d}{d x}\left(1+e^{-x}\right)^{-1}=-\left(1+e^{-x}\right)^{-2} \frac{d}{d x}\left(1+e^{-x}\right) \\
\Leftrightarrow \frac{d}{d x} \sigma(x)=\left(1+e^{-x}\right)^{-2} e^{-x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}} \\
\Leftrightarrow \frac{d}{d x} \sigma(x)=\sigma(x) \cdot \frac{e^{-x}+1-1}{1+e^{-x}}=\sigma(x) \cdot[1-\sigma(x)]
\end{gathered}
$$

Partial derivatives for $\log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)$

For w_{0} :

$$
\frac{\partial}{\partial w_{0}} \log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)=\frac{1}{\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \frac{\partial}{\partial w_{0}} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)
$$

Partial derivatives for $\log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)$

For w_{0} :

$$
\begin{aligned}
& \frac{\partial}{\partial w_{0}} \log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)=\frac{1}{\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \frac{\partial}{\partial w_{0}} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) \\
= & \frac{1}{\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \frac{\partial}{\partial w_{0}}\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)
\end{aligned}
$$

Partial derivatives for $\log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)$
For w_{0} :

$$
\begin{gathered}
\frac{\partial}{\partial w_{0}} \log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)=\frac{1}{\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \frac{\partial}{\partial w_{0}} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) \\
=\frac{1}{\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \frac{\partial}{\partial w_{0}}\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) \\
=1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)
\end{gathered}
$$

For w_{j} :

$$
\begin{gathered}
\frac{\partial}{\partial w_{j}} \log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)=\frac{1}{\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \frac{\partial}{\partial w_{j}} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) \\
=\frac{1}{\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \frac{\partial}{\partial w_{j}}\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) \\
=\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] x_{i j}
\end{gathered}
$$

Partial derivatives for $\log \left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right]$
For w_{0} :

$$
\begin{gathered}
\frac{\partial}{\partial w_{0}} \log \left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right]=\frac{1}{1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \frac{\partial}{\partial w_{0}}\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \\
=\frac{-1}{1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \frac{\partial}{\partial w_{0}}\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) \\
=-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)
\end{gathered}
$$

Partial derivatives for $\log \left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right]$
For w_{0} :

$$
\begin{gathered}
\frac{\partial}{\partial w_{0}} \log \left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right]=\frac{1}{1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \frac{\partial}{\partial w_{0}}\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \\
=\frac{-1}{1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \frac{\partial}{\partial w_{0}}\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) \\
=-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)
\end{gathered}
$$

For w_{j} :

$$
\begin{gathered}
\frac{\partial}{\partial w_{j}} \log \left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right]=\frac{1}{1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \frac{\partial}{\partial w_{j}}\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \\
=\frac{-1}{1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \frac{\partial}{\partial w_{j}}\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) \\
=-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) x_{i j}
\end{gathered}
$$

Partial derivatives for $\log p\left(Y \mid X ; \vec{w}, w_{0}\right)$

Log-likelihood:
$\log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N} y_{i} \log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right)$
For w_{0} :

$$
\begin{gathered}
\frac{\partial}{\partial w_{0}} \log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N} y_{i}\left[1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right]+\left(1-y_{i}\right)\left[-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] \\
=\sum_{i=1}^{N} y_{i}-y_{i} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)+y_{i} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right) \\
=\sum_{i=1}^{N}\left[y_{i}-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right]
\end{gathered}
$$

Partial derivatives for $\log p\left(Y \mid X ; \vec{w}, w_{0}\right)$

Log-likelihood:

$\log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N} y_{i} \log \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right)$

For w_{j} :

$$
\begin{gathered}
\frac{\partial}{\partial w_{j}} \log p\left(Y \mid X ; \vec{w}, w_{0}\right)=\sum_{i=1}^{N} y_{i}\left[1-\sigma\left(\vec{w}^{N} \cdot \vec{x}_{i}+w_{0}\right)\right] x_{i j}+\left(1-y_{i}\right)\left[-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] x_{i j} \\
=\sum_{i=1}^{N}\left[y_{i}-y_{i} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)+y_{i} \sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] x_{i j} \\
=\sum_{i=1}^{N}\left[y_{i}-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right] x_{i j}
\end{gathered}
$$

Gradient ascent for MLE

Thus, we get the gradients as follows:

$$
\begin{aligned}
& \frac{\partial}{\partial w_{0}} \log p(Y \mid X ; \vec{w})=\sum_{i=1}^{N}\left(y_{i}-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right) \\
& \frac{\partial}{\partial w_{j}} \log p(Y \mid X ; \vec{w})=\sum_{i=1}^{N}\left(y_{i}-\sigma\left(\vec{w} \cdot \vec{x}_{i}+w_{0}\right)\right) x_{i j}
\end{aligned}
$$

We can cycle through the examples, accumulating the gradient, and then applying the accumulated value to form an update:

$$
\begin{aligned}
& w_{0}^{(t+1)} \leftarrow w_{0}^{(t)}+\alpha \cdot \frac{\partial}{\partial w_{0}} \log p\left(Y \mid X ; \vec{w}, w_{0}\right) \\
& \vec{w}^{(t+1)} \leftarrow \vec{w}^{(t)}+\alpha \cdot \frac{\partial}{\partial \vec{w}} \log p\left(Y \mid X ; \vec{w}, w_{0}\right) \vec{X}
\end{aligned}
$$

where α is the learning rate.

Gradient ascent for MLE

- Recall that we really want to minimize the $0 / 1$ loss.
- Instead, we are minimizing the log-loss or maximizing the log-likelihood:

$$
\operatorname{argmax}_{\vec{w}} \sum_{i=1}^{N} \log p\left(y_{i} \mid \vec{x}_{i} ; \vec{w}\right)=\operatorname{argmin}_{\vec{w}}-\sum_{i=1}^{N} \log p\left(y_{i} \mid \vec{x}_{i} ; \vec{w}\right)
$$

- This is a surrogate loss: we work with it since it is not computationally feasible to optimize the 0/1 loss directly.

Problem of gradient descent and gradient ascent

We need to choose the learning rate α rather carefully:

- Too small \Rightarrow Slow convergence.
- Too large \Rightarrow Overshoot and oscillation.

Newton-Raphson algorithm

- The Newton-Raphson algorithm: approximate the local shape of the loss function L as a quadratic function:

$$
\vec{w}_{\text {new }} \leftarrow \vec{w}-H^{-1} \frac{\partial}{\partial \vec{w}} L(\vec{w})
$$

where H is the Hessian matrix of second derivatives:

$$
H=\left(\begin{array}{cccc}
\frac{\partial^{2} L}{\partial w_{0}^{2}} & \frac{\partial^{2} L}{\partial w_{0} \partial w_{1}} & \cdots & \frac{\partial^{2} L}{\partial w_{0} \partial w_{d}} \\
\frac{\partial^{2} L}{\partial w_{0} \partial w_{1}} & \frac{\partial^{2} L}{\partial w_{1}^{2}} & \cdots & \frac{\partial^{2} L}{\partial w_{1} \partial w_{d}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial^{2} L}{\partial w_{d} \partial w_{0}} & \frac{\partial^{2} L}{\partial w_{d} \partial w_{1}} & \cdots & \frac{\partial^{2} L}{\partial w_{d}^{2}}
\end{array}\right)
$$

- This is a second-order method, while gradient descent/ascent are first-order methods.

Generalized additive models

- As with regression, we can extend the MLE framework for logistic regression to arbitrary features (basis functions):

$$
p(y=1 \mid \vec{x})=\sigma\left(w_{0}+\phi_{1}(\vec{x})+\cdots+\phi_{m}(\vec{x})\right) .
$$

- Example: Quadratic logistic regression in 2D

$$
p(y=1 \mid \vec{x})=\sigma\left(w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1}^{2}+w_{4} x_{2}^{2}\right)
$$

with quadratic decision boundary

$$
w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1}^{2}+w_{4} x_{2}^{2}=0
$$

Generalized additive models

Linear

We can also include $x_{1} x_{2}$:

Quadratic

Library for Logistic Regression

Examples

```
>>> from sklearn.datasets import load_iris
>> from sklearn. linear_model import LogisticRegression
>> X, y = load_iris(return_X_y=True)
>> clf = LogisticRegression(random_state=0).fit(X, y)
>> clf.predict(X[:2, :])
array([0, 0])
>> clf.predict_proba(X[:2, :])
array([[9.8\ldotse-01, 1.8\ldotse-02, 1.4...e-08],
    [9.7...e-01, 2.8...e-02, ...e-08]])
>> clf.score(X, y)
0.97...
```

https://scikit-learn.org/stable/modules/generated/ sklearn.linear_model.LogisticRegression.html

Next time

The course summary and practical questions for the final exam!

