Lecture 26 - Logistic Regression and Maximum
Likelihood Estimation (continued)

DSC 40A, Fall 2022 @ UC San Diego

Dr. Truong Son Hy, with help from many others

Some materials are taken from Prof. Greg Shakhnarovich’s ML
course at TTIC.



Announcements

The final is coming!

There will be a review session.



Agenda

Logistic Regression.

Maximum Likelihood Estimation.



Logistic Regression



Linear classifier

Hypothesis:
y = h(X) = sign(X - W + w,)

Classifying using a linear decision boundary effectively
reduces the data dimension to 1.

We need to find the direction w and location w, of the
boundary.

We want to minimize the expected zero/one loss for
classifier h : X = Y, which for (X, y) is:

0 if h(%) =y,

LA =11 i6 pisy « y.



Empirical Risk Minimization
The risk (expected loss) of a C-way classifier h(X):

We can write the risk in intergral form:

fz L(h(X),c)p(X,y = c)dX

X c=1
C
=/[Z h(X), c)p(y = c|X)|p(X)dX

Clearly, it is enough to minimize the conditional risk for
any X:

C
R(hI%) = > L(h(R),c)p(y = cIR)

c=1



Conditional risk of a classifier

Conditional risk:
C
R(h|%) = > L(h(X), c)p(y = c|X)

We can factorize this risk as:

R(hIX)=0-p(y = h(x)IX)+1- > ply =cl|X),
c#h(X)

S R(h)= > ply=cl®)=1-p(y = h(x)|X)
c#h(X)

To minimize conditional risk given X, the classifier must
decide:
h(X) = argmax_p(y = c|X)



Log-odds ratio

Optimal rule h(X) = argmax_p(y = c|X) is equivalent to:

o PY=CIX)

h(X)=c* & —>1 Vc
ply = c|X)

that is equivalent to:

For the binary case:

h(X)=1 & log P
p(



The logistic model

We can model the (unknown) decision boundary directly:

ply = 1|X)

— =X-W+w, =0.
p(y = 0]X)

log 0

Since p(y = 1|X) = 1 - p(y = 0]X), we have (after
exponentiating):

p(y = 1]X)

PV E Y p(Re W w) =
1-p(y = 1]X) 0



The logistic model

We can model the (unknown) decision boundary directly:

ply = 1|X)

— =X-W+w, =0.
p(y = 0]X)

log 0

Since p(y = 1|X) = 1 - p(y = 0]X), we have (after
exponentiating):

ply =11X)
T . L. - €&
1-p(y = 1]X)



The logistic model

We can model the (unknown) decision boundary directly:

ply = 1|X)

— =X-W+w, =0.
p(y = 0]X)

log 0

Since p(y = 1|X) = 1 - p(y = 0]X), we have (after
exponentiating):

ID(y:—W:eX (% W+ wy) =
1-ply =1]X)

! — = T+exp(-X-W-w,)=2
ply = 1|X)




The logistic function
]

The logistic / sigmoid function: o(x) =

T+eX "
Forany x € R: 0 < o(x) < 1.
Monotonic: lim, ,__a(x) =0and lim,_ _o(x)=1.
—oa(x)
----- o(x-2)
o(2x)
—0(0.5x+1)
We have:
- 1 -
ply = 11X) = = o(h(X))

1 +exp(-X - W - w,)



Logistic function in R?

For X e RY, o(W - X + w,) is a scalar function of a scalar
variable W - X + w,.

The direction of W determines the orientation, w,
determines the location, and ||W|| determines the slope.



Decision boundary of Logistic Regression

With linear logistic model, we get a linear decision boundary:

)
=

“X+w,=0




Maximum Likelihood Estimation



Likelihood under the logistic model

Regression: observe values, measure residuals under the
model.

Logistic regression: observe labels, measure their
probability under the model.

(W - X; + w,) if y.=1,
-o(W-X; +wy) if y,=0.

5 - (o
p(y;|X; w) = 1

We can write it compactly as:



Likelihood under the logistic model

Suppose we are given a dataset D = {()?,.,y,.)}f-\i1 of N samples.
The likelihood of W and w,, on this data is defined as:

N
p(Y 1%, wo) = [ | p(y; 1% W, we)
i=1

The log-likelihood is then:

log p(Y | X; W, w,) =



Likelihood under the logistic model

Suppose we are given a dataset D = {(7(,.,y,.)}f-\i1 of N samples.
The likelihood of W and w,, on this data is defined as:

N
p(Y 1%, wo) = [ | p(y; 1% W, we)

i=1

The log-likelihood is then:

N
log p(Y 1X; i, wg) = > log ply;|%;; W, w),
i=1

that is equal to:

N
log p(Y |X; W, wg) = > y;log o - %; + wy) + (1 - ;) log(1 - o(i - X; + w,))

i=1



Maximum Likelihood Solution

We want to find w and w,, that maximizes the log-likelihood:

N
log p(Y 1X; W, W,) = >y, log 0(i-%; +wo)+(1-y;) log(1-0(i-X;+w,))
i=1



Maximum Likelihood Solution

We want to find w and w,, that maximizes the log-likelihood:

N

log p(Y 1X; W, W,) = >y, log 0(i-%; +wo)+(1-y;) log(1-0(i-X;+w,))
i=1

We find the derivatives:

N
a =g - -
swy log p(Y |X; W, w,) = 21 (v; - o(w - X; +w,))

N

a - - -

w0 X o) - Z(y,. - O(i - X; + Wo))X;
I=

We can treat y; - p(y;1X;) = y; - o(W - X; + w,) as the prediction

error of the model on X,, y..



Derivatives for In and o
Logarithm:

]
xIn(a)

d
—— In(x) = ¥ dx log,(x) =



Derivatives for In and o

Logarithm:

d 21 d 1

Eln(x) “x" dx log,(x) = xIn(a)
Sigmoid:

o(x) = —
1+eX

i _i 1 _i -xX\-1 _ _ —x—Zi -X
dxo(x)_ dx1+ex dx(1 re) = -(1+e) dx(1+e )



Derivatives for In and o

Logarithm:

d 21 d o

Eln(x) “x" dx log,(x) = xIn(a)
Sigmoid:

o(x) = —
1+eX

Aoy d 1 _d ey 2 g s o
dxo(x)_dx1+ex dx(1+e 0h=-(1ve™) dx(1+e )

e 1 e
(1+e'X)2 T+eX 1+e

d _ X1 -
= HO(X) = 0(x) - —1 e

o %o(x) - (1+eX)2e =

= 0(x) - [1 - o(x)]



Partial derivatives for log o(W - X, + w,)

For W

ilogo(v_l’/-)?i+W0): ! 9

ow, o(W - X + WO) ow,




Partial derivatives for log o(W - X, + w,)

For W
a 2 2 1 a - -
— logo(w- X, +w,) = o(w-X. +w
aWO g ( I 0) O'(|7V . )?,' + WO) aWo ( I 0)
1 0 -
= —————0(W - X; + wp)[1 - o(W - X; + WO)] (W - X; +w,)

o( - X; +w,) w,



Partial derivatives for log o(W - X, + w,)

For w,:
—— log o(W - X; + W) = — ;I 9 o(W - X; + w,)
ow, : o(W - X; + w,) oW, :

= — j o(W - X. +w,)[1-o(W 7<-+w)]a(vT/-x-+W)

O(W'Xi+WO) i 0 I 0 aWO I 0
=1-0(W- X +w,)

Foer:

— log o(W - X; + W,) = — j io(w X +w,)
a]. o(w-xl.+w0)awj !
1 - - - - -
= — ow-x. +w)[1-ow-x. +w,)]—(w-X.+w



Partial derivatives for log[1 - o(W - X + w,)]

For w,:

) I 1 d ..
—log[1-a(w-X; +w,)] = 1-0(W-X. +w
ow, el A 1-o(W-X + Wo)awo[ (W-X;+wo)]
= :14 oW - X, +w,)[1 -o(ﬁ,.;(.a,wo)]i(ﬁ,.;, + W)

1-0(W-X; +w,) ! ! ow, I

= -0(W - X; +w,)



- -

Partial derivatives for log[1 - o(W - X; + w,,)]

For w,:

) I 1 d ..
—log[1-a(w-X; +w,)] = 1-0(W-X. +w
ow, el A 1-o(W-X + Wo)awo[ (W-X;+wo)]
= :14 oW - X, +w,)[1 -o(ﬁ,.;(.a,wo)]i(ﬁ,.;, + W)

1-0(W-X; +w,) ! ! ow, I

= -0(W - X; +w,)

For w;:

9 i 1 d T
S, loell - o(w-Xx; +w,)] = —[1-o(W-X.+w
ow; ool = ol %+ o)) 1—0(VT/-)?i+w0)awj[ (WX, + )]
= 4_1_, O(VT/ X +W0)[1 'O(V_"/‘)?"'WO)]i(W X~+W0)

1-0(W-X; +w,) : I ow; i



Partial derivatives for log p(Y | X; W, w,)
Log-likelihood:

N
log p(Y 1X; W, Wo) = > ¥;log 0(ir-%; +W,)+(1-y;) log(1-0(ir-X; +w,))
i=1

For Wy

a -) - - -
a—logp Y [ X; W, w,) Zy,[1 o(W-X;+wy)]+(1-y;)[-0(W-X; +w,)]

-

N
= Zyi - y;0(W - X; + w,) - oW - X, + Wo) + Y;0(W - X, + w,)
i=1

N
= Z[yi - o(w - X,’ + Wo)]
=1



Partial derivatives for log p(Y | X; W, w,)
Log-likelihood:

N
log p(Y |X; W, wo) = > ¥;log 0(i-%; +W,)+(1-y;) log(1-0(ir-X; +w,))
i=1

For w;:
o N
— log p(Y|X; W, w,) = Z ;[ ‘O(V-"/‘)-e,'"‘W())]X,'j'"('I —yi)[—O(V_I'/-)?i+WO)]XU

w. n
0 J i=1

N
= Z[Y,' - y,'o(V_"/ : )?,' + W) - o - )?i + W) + y,.o(|7v ) )?i + Wo)lx
i=1

ij

N
= Z[yi - o(w - )?,' + WO)]XU
i=1



Gradient ascent for MLE

Thus, we get the gradients as follows:

ailogp(Y|Xw Z(y o(W - X; +w,))

i=1

-

ilong|XW= o(W - X; +w,))X;;

N
ow, J I=1

ij

We can cycle through the examples, accumulating the
gradient, and then applying the accumulated value to form an

update:

ng) « (t) +0- ailogp(le W, w,)
Wo

W(tﬂ) - W(t) +q- ai_' log p(YlX, VT/, WO))?
w

where a is the learning rate.



Gradient ascent for MLE

Recall that we really want to minimize the 0/1 loss.

Instead, we are minimizing the log-loss or maximizing the
log-likelihood:

N N
argmax. Z log p(y;| X;; W) = argmin. - Z log p(y; | X;; W)
i=1 i=1

This is a surrogate loss: we work with it since it is not
computationally feasible to optimize the 0/1 loss directly.



Problem of gradient descent and gradient
ascent

We need to choose the learning rate a rather carefully:
Too small = Slow convergence.
Too large = Overshoot and oscillation.

F 3
loss

N

low learning rate

high learning rate

good learning rate

\J

epoch



Newton-Raphson algorithm

The Newton-Raphson algorithm: approximate the local
shape of the loss function L as a quadratic function:

- - a -
Wpoy < W~ aWL(W)

where H is the Hessian matrix of second derivatives:

A o o
ows AW OW, AWy dw,
ST T
H =] owow, ow? ow,ow,
L o
oW oW,  OWyow, ow}

This is a second-order method, while gradient
descent/ascent are first-order methods.



Generalized additive models

As with regression, we can extend the MLE framework for
logistic regression to arbitrary features (basis functions):

p(y = 11X) = o(wy + ¢, (X) + - + §,(X)).
Example: Quadratic logistic regression in 2D
Py = 1]X) = (W, + W, X, + WX, + WyX3 + W, X3),

with quadratic decision boundary

2 2 _
Wo + Wy Xq + Wy Xy + WaXT + W, X5 = 0.



Generalized additive models

Linear Quadratic

We can also include zjxs:




Library for Logistic Regression

Examples

>>> from sklearn.datasets import load_iris

>>> from sklearn.linear_model import LogisticRegression

>>> X, y = load_iris(return_X_y=True)

>>> clf = LogisticRegression(random_state=0).fit(X, y)

>>> clf.predict(X[:2, :])

array([0, 0])

>>> clf.predict_proba(X[:2, :])

array([[9.8...e-01, 1.8...e-02, 1.4...e-08],
[9.7...e-01, 2.8...e-02, ...e-08]])

>>> clf.score(X, y)

@800

https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LogisticRegression.html


https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Next time

The course summary and practical questions
for the final exam!



