
Lecture 26, 27, 28 – Review, Conclusion

DSC 40A, Fall 2022 @ UC San Diego
Mahdi Soleymani, with help from many others



Announcements▶ Homework 8 is due Tuesday Dec. 6. (optional)▶ A recording of Discussion 8 (probability review) is posted
on the course website and on Campuswire.▶ Fill out CAPEs survey.▶ Deadline: Saturday at 8am.▶ The Final Exam is on Saturday 12/4 from 7:00PM-10:00PM.▶ Bring a cheat sheet.▶ Bring a calculator. No other electronic devices are

allowed.▶ UCSD ID is required!



Final preparation▶ Review the solutions to previous homeworks and
groupworks.▶ All except Homework 8 are up.▶ Identify which concepts are still iffy. Re-watch lecture,
post on Campuswire, come to office hours.▶ We have many office hours between now and the

exam.▶ Look at the past exams at
https://dsc40a.com/resources.▶ Watch the probability review discussion.▶ Study in groups.▶ Make a “cheat sheet”.



Agenda▶ High-level summary of the course.▶ Review problems.▶ Conclusion.



What was this course about?



Part 1: Supervised learning

The “learning from data” recipe to make predictions:
1. Choose a prediction rule. We’ve seen a few:▶ Constant: 𝐻(𝑥) = ℎ.▶ Simple linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.▶ Multiple linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + ... + 𝑤𝑑𝑥(𝑑).
2. Choose a loss function.▶ Absolute loss: 𝐿(ℎ, 𝑦) = |𝑦 − ℎ|.▶ Squared loss: 𝐿(ℎ, 𝑦) = (𝑦 − ℎ)2.▶ 0-1 loss, UCSD loss, etc.
3. Minimize empirical risk to find optimal parameters.▶ Algebraic arguments.▶ Calculus (including vector calculus).▶ Gradient descent.





Part 1: Unsupervised learning▶ When learning how to fit prediction rules, we were
performing supervised machine learning.▶ We discussed 𝑘-Means Clustering, an unsupervised
machine learning method.▶ Supervised learning: there is a “right answer” that we

are trying to predict.▶ Unsupervised learning: there is no right answer,
instead we’re trying to find patterns in the structure
of the data.



Part 2: Probability fundamentals▶ If all outcomes in the sample space 𝑆 are equally likely,
then 𝑃(𝐴) = |𝐴||𝑆| .▶ 𝐴̄ is the complement of event 𝐴. 𝑃(𝐴̄) = 1 − 𝑃(𝐴).▶ Two events 𝐴, 𝐵 are mutually exclusive if they share no
outcomes, i.e. they don’t overlap. In this case, the
probability that 𝐴 happens or 𝐵 happens is𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).▶ More generally, for any two events,𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).▶ The probability that events 𝐴 and 𝐵 both happen is𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴).▶ 𝑃(𝐵|𝐴) is the probability that 𝐵 happens given that

you know 𝐴 happened.▶ Through re-arranging, we see that 𝑃(𝐵|𝐴) = 𝑃(𝐴∩𝐵)𝑃(𝐴) .



Part 2: Combinatorics▶ A sequence is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements with replacement, such that
order matters.▶ Number of sequences: 𝑛𝑘.▶ A permutation is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements without replacement, such
that order matters.▶ Number of permutations: 𝑃(𝑛, 𝑘) = 𝑛!(𝑛−𝑘)! .▶ A combination is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements without replacement, such
that order does not matter.▶ Number of combinations: (𝑛𝑘) = 𝑛!(𝑛−𝑘)!𝑘! .



Part 2: The law of total probability and Bayes’
theorem▶ A set of events 𝐸1, 𝐸2, ..., 𝐸𝑘 is a partition of 𝑆 if each

outcome in 𝑆 is in exactly one 𝐸𝑖.▶ The law of total probability states that if 𝐴 is an event and𝐸1, 𝐸2, ..., 𝐸𝑘 is a partition of 𝑆, then𝑃(𝐴) = 𝑃(𝐸1) ⋅ 𝑃(𝐴|𝐸1) + 𝑃(𝐸2) ⋅ 𝑃(𝐴|𝐸2) + ... + 𝑃(𝐸𝑘) ⋅ 𝑃(𝐴|𝐸𝑘)= 𝑘∑𝑖=1 𝑃(𝐸𝑖) ⋅ 𝑃(𝐴|𝐸𝑖)▶ Bayes’ theorem states that𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)𝑃(𝐴)▶ We often re-write the denominator 𝑃(𝐴) in Bayes’ theorem
using the law of total probability.



Part 2: Independence and conditional
independence▶ Two events 𝐴 and 𝐵 are independent when knowledge of

one event does not change the probability of the other
event.▶ Equivalent conditions: 𝑃(𝐵|𝐴) = 𝑃(𝐵), 𝑃(𝐴|𝐵) = 𝑃(𝐴),𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵).▶ Two events 𝐴 and 𝐵 are conditionally independent if they
are independent given knowledge of a third event, 𝐶.▶ Condition: 𝑃((𝐴 ∩ 𝐵)|𝐶) = 𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶).▶ In general, there is no relationship between
independence and conditional independence.▶ See pinned post on Campuswire for clarification.





Part 2: Naive Bayes▶ In classification, our goal is to predict a discrete category,
called a class, given some features.▶ The Naive Bayes classifier works by estimating the
numerator of 𝑃(class|features) for all possible classes.▶ It uses Bayes’ theorem:𝑃(class|features) = 𝑃(class) ⋅ 𝑃(features|class)𝑃(features)▶ It also uses a “naive” simplifying assumption, that
features are conditionally independent given a class:𝑃(features|class) = 𝑃(feature1|class) ⋅ 𝑃(feature2|class) ⋅ ...





Skipped problems









Review problems



Example: Clustering and combinatorics▶ Suppose we have a dataset of 15 points, each with two
features (𝑥1, 𝑥2). In the dataset, there exist 3 “natural”
clusters, each of which contain 5 data points.▶ Recall that in the k-Means Clustering algorithm, we
initialize 𝑘 centroids by choosing 𝑘 points at random from
our dataset. Suppose 𝑘 = 3.



1. What’s the probability that all three initial centroids are
initialized in the same natural cluster?

2. What’s the probability that all three initial centroids are
initialized in different natural clusters?



Example: basketball

Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Suppose

we have three teams, “Team USA”, “Team China”, and “Team
Lithuania”. How many ways can these teams be formed?



Example: basketball, again
Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Now,

suppose the teams are irrelevant, and all we care about is the
unique pairings themselves. How many ways can these 6
players be split into 3 teams?



Example: high school
A certain high school has 80 students: 20 freshmen, 20
sophomores, 20 juniors, and 20 seniors. If a random sample of
20 students is drawn without replacement, what is the
probability that the sample contains 5 students in each grade
level?



Example: high school, again
A certain high school has 80 students: 20 freshmen, 20
sophomores, 20 juniors, and 20 seniors. If a random sample of
20 students is drawn with replacement, what is the probability
that all students in the sample are from the same grade level?



Example: bitstrings
What is the probability of a randomly generated bitstring of
length 5 having the same first two bits? Assume that each bit
is equally likely to be a 0 or a 1.



Example: bitstrings, again
What is the probability of a randomly generated bitstring of
length 5 having the same first two bits, if we know that the
bitstring has exactly four 0s? Assume that each bit is equally
likely to be a 0 or a 1.



Example: Two-sided cards

Suppose we have 3 cards identical in form except that both
sides of the first card are colored red, both sides of the
second card are colored black, and one side of the third card
is colored red and the other side is colored black. The 3 cards
are mixed up in a hat, and 1 card is randomly selected and put
down on the ground. If the upper side of the chosen card is
colored red, what is the probability that the other side is
colored black?
Source



Marbles

Suppose you are given two jars. Jar I contains one black and 4
white marbles, and Jar II contains 4 black and 6 white marbles.
If a jar is selected at random and a marble is chosen,▶ What is the probability that the marble chosen is a black

marble?▶ If the chosen marble is black, what is the probability that
it came from Jar I?▶ If the chosen marble is black, what is the probability that
it came from Jar II?
Source





Conclusion



Learning objectives
At the start of the quarter, we told you that by the end of DSC
40A, you’ll...▶ understand the basic principles underlying almost every

machine learning and data science method.▶ be better prepared for the math in upper division: vector
calculus, linear algebra, and probability.▶ be able to tackle problems such as:▶ How do we know if an avocado is going to be ripe

before we eat it?▶ How do we teach a computer to read handwritten
text?▶ How do we predict a future data scientist’s salary?



What’s next?
In DSC 40A, we just scratched the surface of the theory behind
data science. In future courses, you’ll build upon your
knowledge from DSC 40A, and will learn:▶ More supervised learning.▶ Logistic regression, decision trees, neural networks,

etc.▶ More unsupervised learning.▶ Other clustering techniques, PCA, etc.▶ More probability.▶ Random variables, distributions, etc.▶ More connections between all of these areas.▶ For instance, you’ll learn how probability is related to
linear regression.▶ More practical tools.



Thank you!

▶ The other instructor, Dr. Truong Son Hy.▶ This course would not have been possible without our TA:
Pushkar Bhuse.▶ It also would not have been possible without our 8 tutors:
Yuxin Guo, Weiyue(Larry) Li, Vivian Lin, Karthikeya
Manchala, Shiv Sakthivel, Aryaman Sinha, Jessica Song
and Yujia(Joy) Wang.▶ You can contact them with any questions at
dsc40a.com/staff.



Theoretical Foundations of Data Science (Part 1)


