
Lecture 27 – Course summary

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others



Announcements
▶ Final exam is coming soon!
▶ Review the solutions to previous homeworks and
groupworks.

▶ Identify which concepts are still iffy. Re-watch lecture and
ask questions (now!).

▶ Look at the past exams at
https://dsc40a.com/resources.

▶ Study in groups.
▶ Make a “cheat sheet”.
▶ Bring a calculator.
▶ Remember to submit The Course and Professor
Evaluations (CAPE) – deadline December 2. If everyone
submits CAPE, everyone will get a bonus percentage!

https://dsc40a.com/resources


Final schedule

Time: December 3rd, 2022 – 7:00pm to 10:00pm (3 hours)
Location: CSB building – room 001 (for my section)

https://act.ucsd.edu/scheduleOfClasses/
scheduleOfClassesStudentResult.htm

Please double-check!

https://act.ucsd.edu/scheduleOfClasses/scheduleOfClassesStudentResult.htm
https://act.ucsd.edu/scheduleOfClasses/scheduleOfClassesStudentResult.htm


Agenda

▶ Acknowledgements

▶ High-level summary of the course.
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What was this course about?



Part 1: Supervised learning

The “learning from data” recipe to make predictions:
1. Choose a prediction rule. We’ve seen a few:

▶ Constant: 𝐻(𝑥) = ℎ.
▶ Simple linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥.
▶ Multiple linear: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + ... + 𝑤𝑑𝑥(𝑑).

2. Choose a loss function.
▶ Absolute loss: 𝐿(ℎ, 𝑦) = |𝑦 − ℎ|.
▶ Squared loss: 𝐿(ℎ, 𝑦) = (𝑦 − ℎ)2.
▶ 0-1 loss, UCSD loss, etc.

3. Minimize empirical risk to find optimal parameters.
▶ Algebraic arguments.
▶ Calculus (including vector calculus).
▶ Gradient descent.



Part 1: Unsupervised learning

▶ When learning how to fit prediction rules, we were
performing supervised machine learning.

▶ Then, we discussed 𝑘-Means Clustering, an unsupervised
machine learning method.
▶ Supervised learning: there is a “right answer” that we
are trying to predict.

▶ Unsupervised learning: there is no right answer,
instead we’re trying to find patterns in the structure
of the data.



Part 2: Probability fundamentals

▶ If all outcomes in the sample space 𝑆 are equally likely,
then 𝑃(𝐴) = |𝐴|

|𝑆| .
▶ �̄� is the complement of event 𝐴. 𝑃(�̄�) = 1 − 𝑃(𝐴).
▶ Two events 𝐴, 𝐵 are mutually exclusive if they share no
outcomes, i.e. they don’t overlap. In this case, the
probability that 𝐴 happens or 𝐵 happens is
𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).

▶ More generally, for any two events,
𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵).

▶ The probability that events 𝐴 and 𝐵 both happen is
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴).
▶ 𝑃(𝐵|𝐴) is the probability that 𝐵 happens given that
you know 𝐴 happened.

▶ Through re-arranging, we see that 𝑃(𝐵|𝐴) = 𝑃(𝐴∩𝐵)
𝑃(𝐴) .



Part 2: Combinatorics
▶ A sequence is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements with replacement, such that
order matters.
▶ Number of sequences: 𝑛𝑘.

▶ A permutation is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements without replacement, such
that order matters.
▶ Number of permutations: 𝑃(𝑛, 𝑘) = 𝑛!

(𝑛−𝑘)! .

▶ A combination is obtained by selecting 𝑘 elements from a
group of 𝑛 possible elements without replacement, such
that order does not matter.
▶ Number of combinations: (𝑛𝑘) =

𝑛!
(𝑛−𝑘)!𝑘! .



Part 2: The law of total probability and Bayes’
theorem
▶ A set of events 𝐸1, 𝐸2, ..., 𝐸𝑘 is a partition of 𝑆 if each
outcome in 𝑆 is in exactly one 𝐸𝑖.

▶ The law of total probability states that if 𝐴 is an event and
𝐸1, 𝐸2, ..., 𝐸𝑘 is a partition of 𝑆, then

𝑃(𝐴) = 𝑃(𝐸1) ⋅ 𝑃(𝐴|𝐸1) + 𝑃(𝐸2) ⋅ 𝑃(𝐴|𝐸2) + ... + 𝑃(𝐸𝑘) ⋅ 𝑃(𝐴|𝐸𝑘)

=
𝑘
∑
𝑖=1
𝑃(𝐸𝑖) ⋅ 𝑃(𝐴|𝐸𝑖)

▶ Bayes’ theorem states that

𝑃(𝐵|𝐴) = 𝑃(𝐵) ⋅ 𝑃(𝐴|𝐵)𝑃(𝐴)
▶ We often re-write the denominator 𝑃(𝐴) in Bayes’ theorem
using the law of total probability.



Part 2: Independence and conditional
independence
▶ Two events 𝐴 and 𝐵 are independent when knowledge of
one event does not change the probability of the other
event.
▶ Equivalent conditions: 𝑃(𝐵|𝐴) = 𝑃(𝐵), 𝑃(𝐴|𝐵) = 𝑃(𝐴),
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵).

▶ Two events 𝐴 and 𝐵 are conditionally independent if they
are independent given knowledge of a third event, 𝐶.
▶ Condition: 𝑃((𝐴 ∩ 𝐵)|𝐶) = 𝑃(𝐴|𝐶) ⋅ 𝑃(𝐵|𝐶).

▶ In general, there is no relationship between
independence and conditional independence.

▶ See pinned post on Campuswire for clarification.



Part 2: Naive Bayes
▶ In classification, our goal is to predict a discrete category,
called a class, given some features.

▶ The Naive Bayes classifier works by estimating the
numerator of 𝑃(class|features) for all possible classes.

▶ It uses Bayes’ theorem:

𝑃(class|features) = 𝑃(class) ⋅ 𝑃(features|class)𝑃(features)

▶ It also uses a “naive” simplifying assumption, that
features are conditionally independent given a class:

𝑃(features|class) = 𝑃(feature1|class) ⋅ 𝑃(feature2|class) ⋅ ...



Summary



Learning objectives
At the start of the quarter, we told you that by the end of DSC
40A, you’ll...
▶ understand the basic principles underlying almost every
machine learning and data science method.

▶ be better prepared for the math in upper division: vector
calculus, linear algebra, and probability.

▶ be able to tackle problems such as:
▶ How do we know if an avocado is going to be ripe
before we eat it?

▶ How do we teach a computer to read handwritten
text?

▶ How do we predict a future data scientist’s salary?



What’s next?
In DSC 40A, we just scratched the surface of the theory behind
data science. In future courses, you’ll build upon your
knowledge from DSC 40A, and will learn:
▶ More supervised learning.

▶ Logistic regression, decision trees, neural networks,
etc.

▶ More unsupervised learning.
▶ Other clustering techniques, PCA, etc.

▶ More probability.
▶ Random variables, distributions, etc.

▶ More connections between all of these areas.
▶ For instance, you’ll learn how probability is related to
linear regression.

▶ More practical tools.


