## Lecture 28 - Review problems



DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

## Announcements

- Final exam tomorrow!
- Review the solutions to previous homeworks and groupworks.
- Identify which concepts are still iffy. Re-watch lecture and ask questions (now!).
- Look at the past exams at https://dsc4ea.com/resources.
- Study in groups.
- Make a "cheat sheet".
- Bring a calculator.
- Remember to submit The Course and Professor Evaluations (CAPE) - deadline tonight. If everyone submits CAPE, everyone will get a bonus percentage!


## Final schedule

| O 40A | Theor Fndtns of Data Sci ( 4 Units) |  |  |  |  |  |  | Prerequisites \| | Resources \| | Evaluations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LE | A00 | MW | 3:00p-3:50p | PCYNH ${ }^{\text {® }}$ | 122 | Hy, Truong Son |  |  |
|  | 88107 | DI | A01 | M | 5:00p-5:50p | PCYNH ${ }^{\text {[3] }}$ | 122 | Hy, Truong Son | 9 | 115 |
|  |  | FI | 12/03/2022 | S | 7:00p-9:59p | CSB | 001 |  |  |  |
| O 40A | Theor | ns | I (4 Units) |  |  |  |  | Prerequisites \| | Resources \| | Evaluations |
|  |  | LE | B00 | MW | 4:00p-4:50p | PCYNH ${ }^{\text {d }}$ | 122 | Soleymani, Mahdi |  |  |
|  | 88109 | DI | B01 | M | 6:00p-6:50p | PCYNH ${ }^{\text {d }}$ | 122 | Soleymani, Mahdi | 19 | 115 |
|  |  | FI | 12/03/2022 | S | 7:00p-9:59p | CSB | 002 |  |  |  |

Time: December 3rd, 2022 - 7:00pm to 10:00pm (3 hours)
Location: CSB building - room 001 (for my section)
https://act.ucsd.edu/scheduleOfClasses/ scheduleOfClassesStudentResult.htm Please double-check!

Review problems

## Example: Clustering and combinatorics

- Suppose we have a dataset of 15 points, each with two features ( $x_{1}, x_{2}$ ). In the dataset, there exist 3 "natural" clusters, each of which contain 5 data points.
- Recall that in the k-Means Clustering algorithm, we initialize $k$ centroids by choosing $k$ points at random from our dataset. Suppose $k=3$.


## Questions:

1. What's the probability that all three initial centroids are initialized in the same natural cluster?
2. What's the probability that all three initial centroids are initialized in different natural clusters?

Let $S$ denote the whole 2-dimensional space (i.e. sample space). Let $E_{1}, E_{2}$, and $E_{3}$ denote the clusters (i.e. partitions):

$$
\begin{gathered}
E_{1} \cap E_{2}=\varnothing, \quad E_{2} \cap E_{3}=\varnothing, \quad E_{3} \cap E_{1}=\varnothing \\
E_{1} \cup E_{2} \cup E_{3}=S .
\end{gathered}
$$

Let $\mu_{1}, \mu_{2}, \mu_{3} \in S$ denote the initial centroids.
For simplicity, we assume $S$ is bounded (i.e. $S$ is the convex hull of all $\left.\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{15}\right)$. We have:

$$
P\left(\mu_{i} \in E_{i}\right)=\frac{\left|E_{i}\right|}{|S|}
$$

1. What's the probability that all three initial centroids are initialized in the same natural cluster? We further assume uniform distribution: $P\left(\mu_{i} \in E_{i}\right)=1 / 3$. Because of independence in sampling, the final result is:
$P\left(\mu_{1} \in E_{1}, \mu_{2} \in E_{2}, \mu_{3} \in E_{3}\right)=P\left(\mu_{1} \in E_{1}\right) P\left(\mu_{2} \in E_{2}\right) P\left(\mu_{3} \in E_{3}\right)=\frac{1}{27}$
2. What's the probability that all three initial centroids are initialized in different natural clusters?
$P\left(\mu_{1} \notin E_{1}, \mu_{2} \notin E_{2}, \mu_{3} \notin E_{3}\right)=P\left(\mu_{1} \notin E_{1}\right) P\left(\mu_{2} \notin E_{2}\right) P\left(\mu_{3} \notin E_{3}\right)=\frac{8}{27}$

## Example: basketball

Suppose we have 6 basketball players who want to organize themselves into 3 basketball teams of 2 players each. Suppose
we have three teams, "Team USA", "Team China", and "Team Lithuania". How many ways can these teams be formed?

## Example: basketball

Suppose we have 6 basketball players who want to organize themselves into 3 basketball teams of 2 players each. Suppose we have three teams, "Team USA", "Team China", and "Team Lithuania". How many ways can these teams be formed?

- Using permutations:

$$
\frac{6!}{2!2!2!}=90
$$

- Using combinations:

$$
\binom{6}{2} \cdot\binom{4}{2} \cdot\binom{2}{2}=\frac{6!}{4!2!} \cdot \frac{4!}{2!2!} \cdot 1=\frac{6!}{2!2!2!}=90
$$

## Example: basketball, again

Suppose we have 6 basketball players who want to organize themselves into 3 basketball teams of 2 players each. Now, suppose the teams are irrelevant, and all we care about is the unique pairings themselves. How many ways can these 6 players be split into 3 teams?

## Example: basketball, again

Suppose we have 6 basketball players who want to organize themselves into 3 basketball teams of 2 players each. Now, suppose the teams are irrelevant, and all we care about is the unique pairings themselves. How many ways can these 6 players be split into 3 teams?

If the order of 3 teams matters, we have 90 ways to form the teams. If the order does not matter, we divide by 3!. Finally, we get:

$$
\frac{90}{3!}=15
$$

## Example: Lottery

When you buy a Powerball ticket, you select 5 different white numbers from among the numbers 1 through 59 (order of the selection does not matter), and one red number from among the numbers 1 through 35. How many different Powerball tickets can you buy?

## Example: Lottery

When you buy a Powerball ticket, you select 5 different white numbers from among the numbers 1 through 59 (order of the selection does not matter), and one red number from among the numbers 1 through 35. How many different Powerball tickets can you buy?

If you check out the Powerball web site you will see that you need to select 5 distinct white numbers, so you can do this $\binom{59}{5}=5,006,386$ ways. Then you can pick the red number $\binom{35}{1}=35$ ways so the total number of tickets is:

$$
\binom{59}{5} \cdot\binom{35}{1}=5,006,386 \cdot 35=175,223,510 .
$$

## Example: Mixed counting problems

An bag contains 15 marbles of which 10 are red and 5 are white. 4 marbles are selected from the bag.
(a) How many (different) samples (of size 4) are possible?

## Example: Mixed counting problems

An bag contains 15 marbles of which 10 are red and 5 are white. 4 marbles are selected from the bag.
(a) How many (different) samples (of size 4) are possible?

$$
\binom{15}{4}=1,365
$$

(b) How many samples (of size 4) consist entirely of red marbles?

## Example: Mixed counting problems

An bag contains 15 marbles of which 10 are red and 5 are white. 4 marbles are selected from the bag.
(a) How many (different) samples (of size 4) are possible?

$$
\binom{15}{4}=1,365
$$

(b) How many samples (of size 4) consist entirely of red marbles?

$$
\binom{10}{4}=210
$$

(c) How many samples have 2 red and 2 white marbles?

## Example: Mixed counting problems

An bag contains 15 marbles of which 10 are red and 5 are white. 4 marbles are selected from the bag.
(a) How many (different) samples (of size 4) are possible?

$$
\binom{15}{4}=1,365
$$

(b) How many samples (of size 4) consist entirely of red marbles?

$$
\binom{10}{4}=210
$$

(c) How many samples have 2 red and 2 white marbles?

$$
\binom{10}{2} \cdot\binom{5}{2}=45 \cdot 10=450
$$

## Example: Mixed counting problems

(d) How many samples (of size 4) have exactly 3 red marbles?

## Example: Mixed counting problems

(d) How many samples (of size 4) have exactly 3 red marbles?

$$
\binom{10}{3} \cdot\binom{5}{1}=120 \cdot 5=600
$$

(e) How many samples (of size 4) have at least 3 red?

## Example: Mixed counting problems

(d) How many samples (of size 4) have exactly 3 red marbles?

$$
\binom{10}{3} \cdot\binom{5}{1}=120 \cdot 5=600
$$

(e) How many samples (of size 4) have at least 3 red?

The answer is the number of samples with 3 red plus the number of samples with 4 red:

$$
\binom{10}{3} \cdot\binom{5}{1}+\binom{10}{4} \cdot\binom{5}{0}=120 \cdot 5+210 \cdot 1=810
$$

## Example: Mixed counting problems

(f) How many samples (of size 4) contain at least one red marble?

## Example: Mixed counting problems

(f) How many samples (of size 4) contain at least one red marble?
One answer is "the number with exactly 1 " + "the number with exactly 2 " + "the number with exactly 3 " + "the number with exactly 4":

$$
\binom{10}{1} \cdot\binom{5}{3}+\binom{10}{2} \cdot\binom{5}{2}+\binom{10}{3} \cdot\binom{5}{1}+\binom{10}{4} \cdot\binom{5}{0}
$$

$$
=10 \cdot 10+45 \cdot 10+120 \cdot 5+210 \cdot 1=100+450+600+210=1,360
$$

But it is a slow computation!

## Example: Mixed counting problems

(f) How many samples (of size 4) contain at least one red marble?
One answer is "the number with exactly 1 " + "the number with exactly 2 " + "the number with exactly 3 " + "the number with exactly 4":

$$
\binom{10}{1} \cdot\binom{5}{3}+\binom{10}{2} \cdot\binom{5}{2}+\binom{10}{3} \cdot\binom{5}{1}+\binom{10}{4} \cdot\binom{5}{0}
$$

$$
=10 \cdot 10+45 \cdot 10+120 \cdot 5+210 \cdot 1=100+450+600+210=1,360
$$

But it is a slow computation! The faster answer is the total number of samples minus the number of samples with no red marbles:

$$
\binom{15}{4}-\binom{10}{0} \cdot\binom{5}{4}=1,365-5=1,360
$$

## Example: bitstrings

What is the probability of a randomly generated bitstring of length 5 having the same first two bits? Assume that each bit is equally likely to be a 0 or a 1 .

We can start the bitstring as 00 or 11. The rest of the string does not matter. Because, there are 4 different ways to start the bitstring: $\{00,01,10,11\}$. The final result is:

$$
\frac{1}{2}
$$

## Example: bitstrings, again

What is the probability of a randomly generated bitstring of length 5 having the same first two bits, if we know that the bitstring has exactly four $0 s$ ? Assume that each bit is equally likely to be a 0 or a 1 .

The first two bits must be two zeros, because there are exactly four 0 s. There is also exactly one bit 1 . We can only put bit 1 among the 3rd, 4th and 5th position. Thus, only 3 possibilities:
$\{00100,00010,00001\}$
The final result is:

$$
\frac{3}{32} .
$$

## Example: Matrix inversion

Given a $2 \times 2$ matrix:

$$
X=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)
$$

its inverse (if exists) is given by:

$$
X^{-1}=\frac{1}{\operatorname{det}(X)} \cdot\left(\begin{array}{cc}
x_{22} & -x_{12} \\
-x_{21} & x_{11}
\end{array}\right)
$$

where $\operatorname{det}(X)$ is the determinant of $X$ :

$$
\operatorname{det}(X)=x_{11} x_{22}-x_{21} x_{12}
$$

## Example: Matrix inversion

Given:

$$
x=\left(\begin{array}{cc}
5 & 2 \\
-7 & -3
\end{array}\right)
$$

what is $X^{-1}$ ?

We have the determinant:

$$
\operatorname{det}(X)=5 \cdot(-3)-(-7) \cdot 2=-1
$$

and the inverse:

$$
X^{-1}=\frac{1}{-1} \cdot\left(\begin{array}{cc}
-3 & -2 \\
7 & 5
\end{array}\right)=\left(\begin{array}{cc}
3 & 2 \\
-7 & -5
\end{array}\right)
$$

Easy to verify:

$$
\left(\begin{array}{cc}
5 & 2 \\
-7 & -3
\end{array}\right)\left(\begin{array}{cc}
3 & 2 \\
-7 & -5
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{cc}
3 & 2 \\
-7 & -5
\end{array}\right)\left(\begin{array}{cc}
5 & 2 \\
-7 & -3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

## Example: Matrix inversion

Given:

$$
X=\left(\begin{array}{ll}
5 & 2 \\
5 & 2
\end{array}\right)
$$

what is $X^{-1}$ ?
We have the determinant:

$$
\operatorname{det}(X)=5 \cdot 2-5 \cdot 2=0
$$

thus there is no inverse for $X$.

## Example: Matrix inversion

Given:

$$
X=\left(\begin{array}{cc}
5 & 5 \\
-7 & -7
\end{array}\right)
$$

what is $X^{-1}$ ?

We have the determinant:

$$
\operatorname{det}(X)=5 \cdot(-7)-(-7) \cdot 5=0
$$

thus there is no inverse for $X$.

## Example: Linear regression by pseudo-inverse

Apply linear regression in matrix form of this data

$$
D=\{(0,0),(1,1)\} .
$$

Fundamentally, we fit a line.
We have:

$$
X=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \text { and } \vec{y}=\binom{0}{1}
$$

The closed-form formula for linear regression is:

$$
\vec{w}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y} .
$$

## Example: Linear regression by pseudo-inverse

First, we compute the covariance matrix:

$$
X^{\top} X=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) .
$$

We have $\operatorname{det}\left(X^{\top} X\right)=2 \cdot 1-1 \cdot 1=1$, and:

$$
\left(X^{\top} X\right)^{-1}=\frac{1}{1}\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) .
$$

The pseudo-inverse of $X$ is:

$$
\left(X^{\top} X\right)^{-1} X^{\top}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) .
$$

The final result for $\vec{w}$ is:

$$
\vec{w}=\binom{w_{0}}{w_{1}}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \cdot\binom{0}{1}=\binom{0}{1} .
$$

## Example: Sigmoid

We have the sigmoid function:

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Let's derive its' derivative!

## Example: Sigmoid

We have the sigmoid function:

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Let's derive its' derivative!

$$
\begin{gathered}
\frac{d}{d x} \sigma(x)=\frac{d}{d x} \frac{1}{1+e^{-x}}=\frac{d}{d x}\left(1+e^{-x}\right)^{-1}=-\left(1+e^{-x}\right)^{-2} \frac{d}{d x}\left(1+e^{-x}\right) \\
\Leftrightarrow \frac{d}{d x} \sigma(x)=\left(1+e^{-x}\right)^{-2} e^{-x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}} \\
\Leftrightarrow \frac{d}{d x} \sigma(x)=\sigma(x) \cdot \frac{e^{-x}+1-1}{1+e^{-x}}=\sigma(x) \cdot[1-\sigma(x)] .
\end{gathered}
$$

## Example: Sigmoid

We have the sigmoid function:

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Show that $\sigma(x)$ is a monotonically increasing function and $0<\sigma(x)<1$.

## Example: Sigmoid

We have the sigmoid function:

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Show that $\sigma(x)$ is a monotonically increasing function and $0<\sigma(x)<1$.

We have:

$$
\sigma^{\prime}(x)=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}>0, \quad \forall x \in(-\infty,+\infty)
$$

because $e^{-x}>0$ and $\left(1+e^{-x}\right)^{2}>0$. Thus $\sigma(x)$ is a monotonically increasing function.

## Example: Sigmoid

We have $1+e^{-x}>0$, thus $\sigma(x)>0$. Furthermore:

$$
\sigma(x)<1 \Leftrightarrow 1<1+e^{-x} \Leftrightarrow e^{-x}>0
$$

holds. Since:

$$
\lim _{x \rightarrow+\infty} e^{-x}=0, \quad \lim _{x \rightarrow-\infty} e^{-x}=+\infty
$$

we get:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \sigma(x)=0, \\
& \lim _{x \rightarrow+\infty} \sigma(x)=1
\end{aligned}
$$

## Example: Logistic

Given a hypothesis

$$
h\left(\vec{x} ; \vec{w}, w_{0}\right)=\sigma\left(\vec{x} \cdot \vec{w}+w_{0}\right) .
$$

In logistic regression, we have:

$$
p\left(y=1 \mid \vec{x} ; \vec{w}, w_{0}\right)=\sigma\left(\vec{x} \cdot \vec{w}+w_{0}\right) .
$$

Let's derive the partial derivative of $h$ with respect to $\vec{w}$ and $w_{0}$ !

## Example: Logistic

First of all, we have:

$$
\begin{aligned}
& \frac{d}{d w_{0}}\left(\vec{x} \cdot \vec{w}+w_{0}\right)=1, \\
& \frac{\partial}{\partial \vec{w}}\left(\vec{x} \cdot \vec{w}+w_{0}\right)=\vec{x} .
\end{aligned}
$$

For convenience, let $\bar{h}=\vec{x} \cdot \vec{w}+w_{0}$. By the chain rule, we get:

$$
\begin{aligned}
& \frac{d h}{d w_{0}}=\sigma^{\prime}(\bar{h}) \cdot \frac{d \bar{h}}{d w_{0}}=\sigma(\bar{h}) \cdot[1-\sigma(\bar{h})], \\
& \frac{\partial h}{\partial \vec{w}}=\sigma^{\prime}(\bar{h}) \cdot \frac{\partial \bar{h}}{\partial \vec{w}}=\sigma(\bar{h}) \cdot[1-\sigma(\bar{h})] \cdot \vec{x} .
\end{aligned}
$$

