Lecture 28 - Review problems

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others



Announcements
Final exam tomorrow!

Review the solutions to previous homeworks and
groupworks.

Identify which concepts are still iffy. Re-watch lecture and
ask questions (now!).

Look at the past exams at
https://dscs4ea.com/resources.

Study in groups.
Make a “cheat sheet”.
Bring a calculator.

Remember to submit The Course and Professor
Evaluations (CAPE) - deadline tonight. If everyone
submits CAPE, everyone will get a bonus percentage!


https://dsc40a.com/resources

Final schedule

Theor Fndtns of Data Sci | ( 4 Units) Prerequisites | Resources | Evaluation:
LE A0O MWF 3:00p-3:50p PCYNH® 122 Hy, Truong Son

88107 DI A01 M 5:00p-5:50p PCYNH(® 122 Hy, Truong Son 9 115 Q
FI 12/03/2022 S 7:00p-9:59p CsB 001

Theor Fndtns of Data Sci | ( 4 Units) Prerequisites | Resources | Evaluation:
LE B0O MWEF 4:00p-4:50p PCYNH® 122 Soleymani, Mahdi

88109 DI BO1 M  6:00p-6:50p PCYNH(® 122 Soleymani, Mahdi 19 1s &
Fl 12/03/2022 S 7:00p-9:59p  CSB 002

Time: December 3rd, 2022 - 7:00pm to 10:00pm (3 hours)
Location: CSB building - room 001 (for my section)

https://act.ucsd.edu/scheduleOfClasses/
scheduleOfClassesStudentResult.htm
Please double-check!


https://act.ucsd.edu/scheduleOfClasses/scheduleOfClassesStudentResult.htm
https://act.ucsd.edu/scheduleOfClasses/scheduleOfClassesStudentResult.htm

Review problems



Example: Clustering and combinatorics

Suppose we have a dataset of 15 points, each with two
features (x, X,). In the dataset, there exist 3 “natural”
clusters, each of which contain 5 data points.

Recall that in the k-Means Clustering algorithm, we
initialize k centroids by choosing k points at random from
our dataset. Suppose k = 3.

Questions:

What's the probability that all three initial centroids are
initialized in the same natural cluster?

What's the probability that all three initial centroids are
initialized in different natural clusters?



Let S denote the whole 2-dimensional space (i.e. sample
space). Let E., E,, and E; denote the clusters (i.e. partitions):

E,nE, =9, E,NnE;=0, EnE =0
E,UE,UE; =S.
Let p,, u,, Uy € S denote the initial centroids.

For simplicity, we assume S is bounded (i.e. S is the convex
hull of all {(x;, y;) 2. We have:

]

|E;|
P([J’ S EI) = E



What's the probability that all three initial centroids are
initialized in the same natural cluster?

We further assume uniform distribution: P(u; € E;) = 1/3.
Because of independence in sampling, the final result is:

1
P(U1 € E1,IJ2 € E2,Ll3 € E3)= P(U1 € E1)P(IJ2 € Ez)P(U3 € E3)= f

What's the probability that all three initial centroids are
initialized in different natural clusters?

8
P(H1 & E1,IJ2 & E21U3 & E3)= P(H1 & E1)P(H2 & Ez)P(“3 ¢ E3)= E



Example: basketball

Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Suppose

we have three teams, “Team USA”, “Team China”, and “Team
Lithuania”. How many ways can these teams be formed?



Example: basketball

Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Suppose

we have three teams, “Team USA”, “Team China”, and “Team
Lithuania”. How many ways can these teams be formed?

Using permutations:

6!
212121 -

Using combinations:

2662 2 T



Example: basketball, again

Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Now,

suppose the teams are irrelevant, and all we care about is the
unique pairings themselves. How many ways can these 6
players be split into 3 teams?



Example: basketball, again

Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Now,

suppose the teams are irrelevant, and all we care about is the
unique pairings themselves. How many ways can these 6
players be split into 3 teams?

If the order of 3 teams matters, we have 90 ways to form the
teams. If the order does not matter, we divide by 3!. Finally, we

get:

90
?=15



Example: Lottery

When you buy a Powerball ticket, you select 5 different white
numbers from among the numbers 1 through 59 (order of the
selection does not matter), and one red number from among
the numbers 1 through 35. How many different Powerball
tickets can you buy?



Example: Lottery

When you buy a Powerball ticket, you select 5 different white
numbers from among the numbers 1 through 59 (order of the
selection does not matter), and one red number from among
the numbers 1 through 35. How many different Powerball
tickets can you buy?

If you check out the Powerball web site you will see that you
need to select 5 distinct white numbers, so you can do this

(559) = 5,006,386 ways. Then you can pick the red number

(315) = 35 ways so the total number of tickets is:

(559) : (315) - 5,006,386 - 35 = 175,223, 510.



Example: Mixed counting problems

An bag contains 15 marbles of which 10 are red and 5 are
white. 4 marbles are selected from the bag.

(a) How many (different) samples (of size 4) are possible?



Example: Mixed counting problems

An bag contains 15 marbles of which 10 are red and 5 are
white. 4 marbles are selected from the bag.

(a) How many (different) samples (of size 4) are possible?

(15

4)= 1,365

(b) How many samples (of size 4) consist entirely of red
marbles?
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(a) How many (different) samples (of size 4) are possible?

(15

4)= 1,365

(b) How many samples (of size 4) consist entirely of red

marbles?

(’IO
4

(c) How many samples have 2 red and 2 white marbles?

)=21o



Example: Mixed counting problems

An bag contains 15 marbles of which 10 are red and 5 are
white. 4 marbles are selected from the bag.

(a) How many (different) samples (of size 4) are possible?

(15

4)= 1,365

(b) How many samples (of size 4) consist entirely of red

marbles?

(’IO
4

(c) How many samples have 2 red and 2 white marbles?

(120)-(2) - 45.10 = 450

)=21o



Example: Mixed counting problems

(d) How many samples (of size 4) have exactly 3 red marbles?



Example: Mixed counting problems

(d) How many samples (of size 4) have exactly 3 red marbles?

(130)-(?): 1205 = 600

(e) How many samples (of size 4) have at least 3 red?



Example: Mixed counting problems

(d) How many samples (of size 4) have exactly 3 red marbles?

(130)-(?): 1205 = 600

(e) How many samples (of size 4) have at least 3 red?
The answer is the number of samples with 3 red plus the
number of samples with 4 red:

(130),(?)+(140),(g): 120-5+210-1 = 810



Example: Mixed counting problems

(f) How many samples (of size 4) contain at least one red
marble?



Example: Mixed counting problems

(f) How many samples (of size 4) contain at least one red
marble?

One answer is “the number with exactly 1" + “the number with
exactly 2” + “the number with exactly 3” + “the number with

exactly 4"
(D)-6)+()-6)+(5) 0+ -6)
=10-10+45-10+120-5+210-1=100+450+600+210 = 1,360

But it is a slow computation!



Example: Mixed counting problems

(f) How many samples (of size 4) contain at least one red
marble?

One answer is “the number with exactly 1" + “the number with
exactly 2” + “the number with exactly 3” + “the number with

exactly 4"
(D)-6)+()-6)+(5) 0+ -6)
=10-10+45-10+120-5+210-1=100+450+600+210 = 1,360

But it is a slow computation! The faster answer is the total
number of samples minus the number of samples with no red

marbles:
(145) - (100) : (z) - 1,365-5 = 1, 360.



Example: bitstrings

What is the probability of a randomly generated bitstring of
length 5 having the same first two bits? Assume that each bit
is equally likely to bea O ora 1.

We can start the bitstring as 00 or 11. The rest of the string

does not matter. Because, there are 4 different ways to start
the bitstring: {00,01, 10, 11}. The final result is:

1
2



Example: bitstrings, again

What is the probability of a randomly generated bitstring of
length 5 having the same first two bits, if we know that the
bitstring has exactly four 0s? Assume that each bit is equally
likely tobeaOora.

The first two bits must be two zeros, because there are exactly
four 0s. There is also exactly one bit 1. We can only put bit 1
among the 3rd, 4th and 5th position. Thus, only 3 possibilities:

{00100,00010,00001}

The final result is:



Example: Matrix inversion

Given a 2 x 2 matrix:
X = (X11 X12),
X1 X3
its inverse (if exists) is given by:

P (Xzz 'X12)
det(X) X I

where det(X) is the determinant of X:

det(X) = Xq4 %55 = X1 X1



Example: Matrix inversion
Given:
5 2
(5 3)
what is X1?

We have the determinant:
det(X)=5-(-3)-(-7)-2=-1,

and the inverse:

4_1 (-3 -2\ _(3 2
X =5 (7 5) \-7 -5/
Easy to verify:

(& 3G 5) ) = (5 35

2
-3

)

10
0 1

).



Example: Matrix inversion

Given: 5 5
X= (5 2)'
what is X712
We have the determinant:
det(X)=5-2-5-2=0,

thus there is no inverse for X.



Example: Matrix inversion

Given: s s
X= (-7 -7)'
what is X712
We have the determinant:
det(X)=5-(-7)-(-7)-5=0,

thus there is no inverse for X.



Example: Linear regression by pseudo-inverse

Apply linear regression in matrix form of this data
D ={(0,0), (1, 1)}

Fundamentally, we fit a line.

10 . (0
X=(1 1) and y-(1).

The closed-form formula for linear regression is:

We have:

w=(X"X)XxTy.



Example: Linear regression by pseudo-inverse

First, we compute the covariance matrix:
1T 1\/1 O 2 1
Ty _ —
XX_(O 1)(1 ‘I)_(‘I ‘I)'
We have det(X"X)=2-1-1-1=1, and:
SN A AU B
(XX)‘1(-1 2)\-1 2/
The pseudo-inverse of X is:
1 -1 11 1 0
Ty\-TyT _ . :
o =5 ) o 2)= (5 )
The final result for w is:

i (%o) = (X)X = (_11 (1)) ' ((1)) - (?)

1



Example: Sigmoid

We have the sigmoid function:

1
T+eX

o(x) =

Let's derive its’ derivative!



Example: Sigmoid

We have the sigmoid function:

1
T+eX

o(x) =

Let's derive its’ derivative!

i _i 1 _i -xy-1 — _ —x—2i X
dxo(x)_dx‘l+e‘x_dx(1+e ) =-(1+e™) dX(1+e )
i — -X\-2 =X _ e—x = 1 . e-X
deo(x)'(1+e )"e _(1+e—x)2_1+e‘x 1+ex

o Cf’—xo(x) - o(x)- % - 0(x)-[1 - 0(X)].



Example: Sigmoid

We have the sigmoid function:

1

o(x) = T+ex

Show that o(x) is @ monotonically increasing function and
0<oa(x)<1.



Example: Sigmoid

We have the sigmoid function:

o) = T1+ex

Show that o(x) is @ monotonically increasing function and
0<oa(x)<1.
We have:

, e
o'(x) = (e >0, Vx € (-o0,+c0),

because e > 0 and (1 + e*)? > 0. Thus o(x) is a monotonically
increasing function.



Example: Sigmoid

We have 1+e™* >0, thus a(x) > 0. Furthermore:

oxX)<1e1<1+eX o e™*>0

holds. Since:
lim e*=0, lim e =+oo,
X—+00 X—-00
we get:
lim o(x) =0,
X—-00
lim o(x)=1.

X—>+00



Example: Logistic

Given a hypothesis
h(X; W, w,) = 0(X - W + w,y).
In logistic regression, we have:

ply = 11X W, w,) = o(X - W + w,).

Let's derive the partial derivative of h with respect to w and
w,!
0



Example: Logistic

First of all, we have:

§¢



