
Lecture 28 – Review problems

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others



Announcements
▶ Final exam tomorrow!
▶ Review the solutions to previous homeworks and
groupworks.

▶ Identify which concepts are still iffy. Re-watch lecture and
ask questions (now!).

▶ Look at the past exams at
https://dsc40a.com/resources.

▶ Study in groups.
▶ Make a “cheat sheet”.
▶ Bring a calculator.
▶ Remember to submit The Course and Professor
Evaluations (CAPE) – deadline tonight. If everyone
submits CAPE, everyone will get a bonus percentage!

https://dsc40a.com/resources


Final schedule

Time: December 3rd, 2022 – 7:00pm to 10:00pm (3 hours)
Location: CSB building – room 001 (for my section)

https://act.ucsd.edu/scheduleOfClasses/
scheduleOfClassesStudentResult.htm

Please double-check!

https://act.ucsd.edu/scheduleOfClasses/scheduleOfClassesStudentResult.htm
https://act.ucsd.edu/scheduleOfClasses/scheduleOfClassesStudentResult.htm


Review problems



Example: Clustering and combinatorics

▶ Suppose we have a dataset of 15 points, each with two
features (𝑥1, 𝑥2). In the dataset, there exist 3 “natural”
clusters, each of which contain 5 data points.

▶ Recall that in the k-Means Clustering algorithm, we
initialize 𝑘 centroids by choosing 𝑘 points at random from
our dataset. Suppose 𝑘 = 3.

Questions:
1. What’s the probability that all three initial centroids are
initialized in the same natural cluster?

2. What’s the probability that all three initial centroids are
initialized in different natural clusters?



Let 𝑆 denote the whole 2-dimensional space (i.e. sample
space). Let 𝐸1, 𝐸2, and 𝐸3 denote the clusters (i.e. partitions):

𝐸1 ∩ 𝐸2 = ∅, 𝐸2 ∩ 𝐸3 = ∅, 𝐸3 ∩ 𝐸1 = ∅

𝐸1 ∪ 𝐸2 ∪ 𝐸3 = 𝑆.
Let 𝜇1, 𝜇2, 𝜇3 ∈ 𝑆 denote the initial centroids.

For simplicity, we assume 𝑆 is bounded (i.e. 𝑆 is the convex
hull of all {(𝑥𝑖, 𝑦𝑖)}

15
𝑖=1). We have:

𝑃(𝜇𝑖 ∈ 𝐸𝑖) =
|𝐸𝑖|
|𝑆| .



1. What’s the probability that all three initial centroids are
initialized in the same natural cluster?
We further assume uniform distribution: 𝑃(𝜇𝑖 ∈ 𝐸𝑖) = 1/3.
Because of independence in sampling, the final result is:

𝑃(𝜇1 ∈ 𝐸1, 𝜇2 ∈ 𝐸2, 𝜇3 ∈ 𝐸3) = 𝑃(𝜇1 ∈ 𝐸1)𝑃(𝜇2 ∈ 𝐸2)𝑃(𝜇3 ∈ 𝐸3) =
1
27

2. What’s the probability that all three initial centroids are
initialized in different natural clusters?

𝑃(𝜇1 ∉ 𝐸1, 𝜇2 ∉ 𝐸2, 𝜇3 ∉ 𝐸3) = 𝑃(𝜇1 ∉ 𝐸1)𝑃(𝜇2 ∉ 𝐸2)𝑃(𝜇3 ∉ 𝐸3) =
8
27



Example: basketball

Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Suppose

we have three teams, “Team USA”, “Team China”, and “Team
Lithuania”. How many ways can these teams be formed?

▶ Using permutations:

6!
2!2!2! = 90

▶ Using combinations:

(62) ⋅ (
4
2) ⋅ (

2
2) =

6!
4!2! ⋅

4!
2!2! ⋅ 1 =

6!
2!2!2! = 90
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Example: basketball, again

Suppose we have 6 basketball players who want to organize
themselves into 3 basketball teams of 2 players each. Now,

suppose the teams are irrelevant, and all we care about is the
unique pairings themselves. How many ways can these 6
players be split into 3 teams?

If the order of 3 teams matters, we have 90 ways to form the
teams. If the order does not matter, we divide by 3!. Finally, we
get:

90
3! = 15
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Example: Lottery

When you buy a Powerball ticket, you select 5 different white
numbers from among the numbers 1 through 59 (order of the
selection does not matter), and one red number from among
the numbers 1 through 35. How many different Powerball
tickets can you buy?

If you check out the Powerball web site you will see that you
need to select 5 distinct white numbers, so you can do this
(595 ) = 5, 006, 386 ways. Then you can pick the red number
(351 ) = 35 ways so the total number of tickets is:

(595 ) ⋅ (
35
1 ) = 5, 006, 386 ⋅ 35 = 175, 223, 510.
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Example: Mixed counting problems

An bag contains 15 marbles of which 10 are red and 5 are
white. 4 marbles are selected from the bag.

(a) How many (different) samples (of size 4) are possible?

(154 ) = 1, 365

(b) How many samples (of size 4) consist entirely of red
marbles?

(104 ) = 210

(c) How many samples have 2 red and 2 white marbles?

(102 ) ⋅ (
5
2) = 45 ⋅ 10 = 450
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Example: Mixed counting problems

(d) How many samples (of size 4) have exactly 3 red marbles?

(103 ) ⋅ (
5
1) = 120 ⋅ 5 = 600

(e) How many samples (of size 4) have at least 3 red?
The answer is the number of samples with 3 red plus the
number of samples with 4 red:

(103 ) ⋅ (
5
1) + (

10
4 ) ⋅ (

5
0) = 120 ⋅ 5 + 210 ⋅ 1 = 810
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Example: Mixed counting problems

(f) How many samples (of size 4) contain at least one red
marble?

One answer is “the number with exactly 1” + “the number with
exactly 2” + “the number with exactly 3” + “the number with
exactly 4”:

(101 ) ⋅ (
5
3) + (

10
2 ) ⋅ (

5
2) + (

10
3 ) ⋅ (

5
1) + (

10
4 ) ⋅ (

5
0)

= 10 ⋅10+45 ⋅10+120 ⋅5+210 ⋅1 = 100+450+600+210 = 1, 360
But it is a slow computation! The faster answer is the total
number of samples minus the number of samples with no red
marbles:

(154 ) − (
10
0 ) ⋅ (

5
4) = 1, 365 − 5 = 1, 360.
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Example: bitstrings

What is the probability of a randomly generated bitstring of
length 5 having the same first two bits? Assume that each bit
is equally likely to be a 0 or a 1.

We can start the bitstring as 00 or 11. The rest of the string
does not matter. Because, there are 4 different ways to start
the bitstring: {00, 01, 10, 11}. The final result is:

1
2



Example: bitstrings, again

What is the probability of a randomly generated bitstring of
length 5 having the same first two bits, if we know that the
bitstring has exactly four 0s? Assume that each bit is equally
likely to be a 0 or a 1.

The first two bits must be two zeros, because there are exactly
four 0s. There is also exactly one bit 1. We can only put bit 1
among the 3rd, 4th and 5th position. Thus, only 3 possibilities:

{00100, 00010, 00001}

The final result is:
3
32.



Example: Matrix inversion

Given a 2 × 2 matrix:

𝑋 = (𝑥11 𝑥12
𝑥21 𝑥22

) ,

its inverse (if exists) is given by:

𝑋−1 = 1
det(𝑋) ⋅ (

𝑥22 −𝑥12
−𝑥21 𝑥11

) ,

where det(𝑋) is the determinant of 𝑋 :

det(𝑋) = 𝑥11𝑥22 − 𝑥21𝑥12.



Example: Matrix inversion
Given:

𝑋 = ( 5 2
−7 −3) ,

what is 𝑋−1?

We have the determinant:

det(𝑋) = 5 ⋅ (−3) − (−7) ⋅ 2 = −1,
and the inverse:

𝑋−1 = 1
−1 ⋅ (

−3 −2
7 5 ) = (

3 2
−7 −5) .

Easy to verify:

( 5 2
−7 −3) (

3 2
−7 −5) = (

1 0
0 1) and ( 3 2

−7 −5) (
5 2
−7 −3) = (

1 0
0 1) .
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Example: Matrix inversion

Given:
𝑋 = ( 5 5

−7 −7) ,

what is 𝑋−1?

We have the determinant:

det(𝑋) = 5 ⋅ (−7) − (−7) ⋅ 5 = 0,
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Example: Linear regression by pseudo-inverse

Apply linear regression in matrix form of this data

𝐷 = {(0, 0), (1, 1)}.

Fundamentally, we fit a line.

We have:
𝑋 = (1 0

1 1) and ⃗𝑦 = (01) .

The closed-form formula for linear regression is:

�⃗� = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦.



Example: Linear regression by pseudo-inverse
First, we compute the covariance matrix:

𝑋𝑇𝑋 = (1 1
0 1) (

1 0
1 1) = (

2 1
1 1) .

We have det(𝑋𝑇𝑋) = 2 ⋅ 1 − 1 ⋅ 1 = 1, and:

(𝑋𝑇𝑋)−1 = 11 (
1 −1
−1 2 ) = (

1 −1
−1 2 ) .

The pseudo-inverse of 𝑋 is:

(𝑋𝑇𝑋)−1𝑋𝑇 = ( 1 −1
−1 2 ) ⋅ (

1 1
0 1) = (

1 0
−1 1) .

The final result for �⃗� is:

�⃗� = (𝑤0𝑤1
) = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦 = ( 1 0

−1 1) ⋅ (
0
1) = (

0
1) .



Example: Sigmoid

We have the sigmoid function:

𝜎(𝑥) = 1
1 + 𝑒−𝑥

Let’s derive its’ derivative!

𝑑
𝑑𝑥𝜎(𝑥) =

𝑑
𝑑𝑥

1
1 + 𝑒−𝑥 =

𝑑
𝑑𝑥 (1 + 𝑒

−𝑥)−1 = −(1 + 𝑒−𝑥)−2 𝑑𝑑𝑥 (1 + 𝑒
−𝑥)

⇔ 𝑑
𝑑𝑥𝜎(𝑥) = (1 + 𝑒

−𝑥)−2𝑒−𝑥 = 𝑒−𝑥
(1 + 𝑒−𝑥)2 =

1
1 + 𝑒−𝑥 ⋅

𝑒−𝑥
1 + 𝑒−𝑥

⇔ 𝑑
𝑑𝑥𝜎(𝑥) = 𝜎(𝑥) ⋅

𝑒−𝑥 + 1 − 1
1 + 𝑒−𝑥 = 𝜎(𝑥) ⋅ [1 − 𝜎(𝑥)].
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Example: Sigmoid

We have the sigmoid function:

𝜎(𝑥) = 1
1 + 𝑒−𝑥

Show that 𝜎(𝑥) is a monotonically increasing function and
0 < 𝜎(𝑥) < 1.

We have:

𝜎′(𝑥) = 𝑒−𝑥
(1 + 𝑒−𝑥)2 > 0, ∀𝑥 ∈ (−∞, +∞),

because 𝑒−𝑥 > 0 and (1 + 𝑒−𝑥)2 > 0. Thus 𝜎(𝑥) is a monotonically
increasing function.
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Example: Sigmoid

We have 1 + 𝑒−𝑥 > 0, thus 𝜎(𝑥) > 0. Furthermore:

𝜎(𝑥) < 1 ⇔ 1 < 1 + 𝑒−𝑥 ⇔ 𝑒−𝑥 > 0

holds. Since:

lim
𝑥→+∞

𝑒−𝑥 = 0, lim
𝑥→−∞

𝑒−𝑥 = +∞,

we get:
lim
𝑥→−∞

𝜎(𝑥) = 0,

lim
𝑥→+∞

𝜎(𝑥) = 1.



Example: Logistic

Given a hypothesis

ℎ( ⃗𝑥; �⃗�, 𝑤0) = 𝜎( ⃗𝑥 ⋅ �⃗� + 𝑤0).

In logistic regression, we have:

𝑝(𝑦 = 1| ⃗𝑥; �⃗�, 𝑤0) = 𝜎( ⃗𝑥 ⋅ �⃗� + 𝑤0).

Let’s derive the partial derivative of ℎ with respect to �⃗� and
𝑤0!



Example: Logistic

First of all, we have:

𝑑
𝑑𝑤0

( ⃗𝑥 ⋅ �⃗� + 𝑤0) = 1,

𝜕
𝜕�⃗� ( ⃗𝑥 ⋅ �⃗� + 𝑤0) = ⃗𝑥.

For convenience, let ℎ̄ = ⃗𝑥 ⋅ �⃗� + 𝑤0. By the chain rule, we get:

𝑑ℎ
𝑑𝑤0

= 𝜎′(ℎ̄) ⋅ 𝑑ℎ̄𝑑𝑤0
= 𝜎(ℎ̄) ⋅ [1 − 𝜎(ℎ̄)],

𝜕ℎ
𝜕�⃗� = 𝜎′(ℎ̄) ⋅ 𝜕ℎ̄𝜕�⃗� = 𝜎(ℎ̄) ⋅ [1 − 𝜎(ℎ̄)] ⋅ ⃗𝑥.


